#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/video/tracking.hpp"
#include
#include
using namespace std;
using namespace cv;
/** 函数声明 */
void detectAndDisplay(Mat& frame);
/** 全局变量 */
string face_cascade_name = "haarcascade_frontalface_alt.xml";
//string eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
CascadeClassifier face_cascade;
//CascadeClassifier eyes_cascade;
string window_name = "Face detection with Kalman";
RNG rng(12345);
struct face{
Point leftTop=0;
int width=0;
int height=0;
};
face preFace;
/** @主函数 */
int main()
{
//kalman参数设置
int stateNum = 4;
int measureNum = 2;
KalmanFilter KF(stateNum, measureNum, 0);
//Mat processNoise(stateNum, 1, CV_32F);
Mat measurement = Mat::zeros(measureNum, 1, CV_32F);
KF.transitionMatrix = *(Mat_(stateNum, stateNum) << 1, 0, 1, 0,//A 状态转移矩阵
0, 1, 0, 1,
0, 0, 1, 0,
0, 0, 0, 1);
//这里没有设置控制矩阵B,默认为零
setIdentity(KF.measurementMatrix);//H=[1,0,0,0;0,1,0,0] 测量矩阵
setIdentity(KF.processNoiseCov, Scalar::all(1e-5));//Q高斯白噪声,单位阵
setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));//R高斯白噪声,单位阵
setIdentity(KF.errorCovPost, Scalar::all(1));//P后验误差估计协方差矩阵,初始化为单位阵
randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));//初始化状态为随机值
//读入视频
if (!face_cascade.load(face_cascade_name)){ cout << "--(!)Error loading\n" << endl; };
Mat frame, frame2;
VideoCapture cap;
cap.open("me1.mp4");
//cap.open("me2.mp4");
//cap.open("me3.mp4");
while (true){
for (int i = 0; i < 1; i++){
cap >> frame;
}
if (!frame.empty())
{
resize(frame, frame2, Size(), 0.5, 0.5, INTER_LINEAR);
Mat prediction = KF.predict();
Point predict_pt = Point((int)prediction.at(0), (int)prediction.at(1));
detectAndDisplay(frame2);
measurement.at(0) = (float)preFace.leftTop.x;
measurement.at(1) = (float)preFace.leftTop.y;
KF.correct(measurement);
//画卡尔曼的效果
Point center(predict_pt.x + preFace.width*0.5, predict_pt.y + preFace.height*0.5);
ellipse(frame2, center, Size(preFace.width*0.3, preFace.height*0.3), 0, 0, 360, Scalar(0, 0, 255), 4, 8, 0);
circle(frame2, center, 3, Scalar(0, 0, 255), -1);
imshow(window_name, frame2);
waitKey(1);
}
else
{
printf(" --(!) No frame -- Break!");
break;
}
}
return 0;
}
/** @函数 detectAndDisplay */
void detectAndDisplay(Mat& frame)
{
std::vector faces;
Mat frame_gray;
int Max_area=0;
int faceID=0;
cvtColor(frame, frame_gray, CV_BGR2GRAY);
equalizeHist(frame_gray, frame_gray);
//-- 多尺寸检测人脸
face_cascade.detectMultiScale(frame_gray, faces, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
//找出最大的脸,可以去除不是脸的误检,这些误检一般比较小
for (int i = 0; i < faces.size(); i++)
{
if ((int)(faces[i].width*faces[i].height) > Max_area){
Max_area =(int) faces[i].width*faces[i].height;
faceID=i;
}
}
if (faces.size() > 0)//必须是检测到脸才绘制当前人脸圆圈,并且只能绘制最大的脸
{
preFace.leftTop.x = faces[faceID].x;
preFace.leftTop.y = faces[faceID].y;
preFace.height = faces[faceID].height;
preFace.width = faces[faceID].width;
Point center(faces[faceID].x + faces[faceID].width*0.5, faces[faceID].y + faces[faceID].height*0.5);
ellipse(frame, center, Size(faces[faceID].width*0.5, faces[faceID].height*0.5), 0, 0, 360, Scalar(0, 255, 0), 1, 8, 0);
circle(frame, center, 3, Scalar(0, 255,0), -1);
}
else{//没检测到人脸绘制之前的人脸
Point center(preFace.leftTop.x + preFace.width*0.5, preFace.leftTop.y + preFace.height*0.5);
ellipse(frame, center, Size(preFace.width*0.5, preFace.height*0.5), 0, 0, 360, Scalar(0, 255, 0), 1, 8, 0);
circle(frame, center, 3, Scalar(0, 255, 0), -1);
}
}