IEEE 2030.5 概述

IEEE 2030.5 Overview

Prior to the development of IEEE 2030.5, the ZigBee Smart Energy 1.0 (SEP 1.0) specification was ratified as a final specification by the ZigBee Alliance in December 2007. Since that time, it has been updated and expanded with several versions, including the version of 1.1b in November 2012. The initial application was focused on smart grid communications to residential appliances and other energy consuming devices within a home area network.

在IEEE 2030.5开发之前,ZigBee联盟于2007年12月批准了ZigBee Smart Energy 1.0(SEP 1.0)规范作为最终规范。自那时以来,它已进行了更新和扩展,包括多个版本,包括2012年11月的1.1b。最初的应用集中在智能电网与家庭局域网内的家用电器和其他能耗设备的通信上。

 

The standard was developed by many stakeholders across the energy supply ecosystem including manufacturers of smart meters, appliances, programmable thermostats and other devices in homes, utilities, energy service providers as well as various government and standards organizations around the world. Work on the standard started in 2008 and formally became an IEEE standard in 2013, adopted as IEEE 2030.5-2013. SEP 2 was selected in 2009 by the United States National Institute of Standards and Technology (NIST) as a standard for home energy management devices.

该标准是由能源供应生态系统中的许多利益相关者开发的,包括智能电表,电器,可编程恒温器和家庭中其他设备的制造商,公用事业,能源服务提供商以及世界各地的政府和标准组织。该标准的制定工作始于2008年,并于2013年正式成为IEEE标准,并被采纳为IEEE 2030.5-2013。 SEP 2在2009年被美国国家标准技术研究院(NIST)选为家庭能源管理设备的标准。

 

Between development of IEEE 2030.5 (known at the time as SEP 2.0) and adoption as an IEEE standard, the Consortium for SEP 2 Interoperability (known as CSEP) was formed by the HomePlug Powerline Alliance, the Wi-Fi Alliance and the ZigBee Alliance.

在IEEE 2030.5(当时称为SEP 2.0)的开发与被采纳为IEEE标准之间,由HomePlug电力线联盟,Wi-Fi联盟和ZigBee联盟组成了SEP 2互操作性联盟(称为CSEP)。

 

CSEP focused on accelerating the market availability of interoperable SEP 2 products. The Consortium created a comprehensive testing and certification specification and qualified a set of certification test tools to validate conformance of wired or wireless devices with IEEE 2030.5 interfaces. It formally announced completion of the first version Test Specification and approval of the first certification test tools in January of 2015.

CSEP致力于加快可互操作的SEP 2产品的市场可用性。联盟创建了全面的测试和认证规范,并对一套认证测试工具进行了认证,以验证有线或无线设备是否符合IEEE 2030.5接口。它于2015年1月正式宣布完成第一版测试规范并批准了第一批认证测试工具。

 

Although CSEP completed its work in 2015, there was little interest in the standard until the California CPUC sponsored Smart Inverter Working Group (SIWG) concluded that IEEE 2030.5 would be the protocol of choice for communications with DER assets by the IOUs. The recommendation was formally adopted in 2016 and a application profile and Test Specification were completed in 2018 with mandated Simpson, Kang and Mater PacWorld2019 5 compliance in process. The first formal certification program for an IEEE 2030.5 application has been designed and is in the process of implementation.

尽管CSEP在2015年完成了工作,但直到加州CPUC发起的智能逆变器工作组(SIWG)得出结论,IEEE 2030.5将成为IOU与DER资产通信的首选协议时,对该标准几乎没有兴趣。该建议于2016年正式采用,2018年完成了应用简介和测试规范,并要求Simpson,Kang和Mater PacWorld2019 5符合法规要求。已经设计了第一个针对IEEE 2030.5应用程序的正式认证程序,该程序正在实施中。

 

In order to address some gaps in the IEEE 2030.5 specification related to DER communications, the standard was updated and formally adopted by IEEE in 2018.

为了解决与DER通信相关的IEEE 2030.5规范中的某些空白,IEEE于2018年对该标准进行了更新和正式采用。

 

IEEE 2030.5 Technical Description

IEEE 2030.5 is an IP-based application protocol for smart metering and automation of demand/response and load control in local or home area networks. It can be used in residential and commercial building settings to connect and manage devices using the Smart Grid.

IEEE 2030.5是基于IP的应用协议,用于智能计量以及局域网或家庭局域网中的需求/响应和负载控制的自动化。 它可用于住宅和商业建筑设置中,以使用智能电网连接和管理设备。

 

In IEEE 2030.5, a device can be a client or a server; and the differentiation is based on whether or not the device contains the resource. For example, a server would host a resource created by an energy service provider (e.g. demand response program), while a client is accessing server resources for consumption (e.g. text message) or to modify them. IEEE 2030.5 organizes many resources into the notion of functions sets: a set of device behaviors to deliver a specific functionality. Resources and function sets are organized into three basic categories; Support, Common, and Smart Energy.

在IEEE 2030.5中,设备可以是客户端或服务器。 区分基于设备是否包含资源。 例如,服务器将托管由能源服务提供商创建的资源(例如需求响应程序),而客户端则在访问服务器资源以进行消耗(例如文本消息)或对其进行修改。 IEEE 2030.5将许多资源组织成功能集的概念:一组设备行为以提供特定的功能。 资源和功能集分为三个基本类别: 支持,通用和智能能源。

 

IEEE 2030.5 is built on the representational state transfer (REST) architecture that is used to deploy Web services over HTTP. The REST architecture is based on a client server model in which servers contain and perform operations on resources. Servers expose resource representations to clients via URIs, and clients access these resources using the HTTP GET, PUT, POST and DELETE operations.

IEEE 2030.5建立在代表性状态传输(REST)体系结构上,该体系结构用于通过HTTP部署Web服务。 REST体系结构基于客户端服务器模型,其中服务器包含资源并对资源执行操作。 服务器通过URI向客户端公开资源表示,客户端使用HTTP GET,PUT,POST和DELETE操作访问这些资源。

 

Many of the functions sets in IEEE 2030.5 have dependencies on other resources. For example, the DRLC function set has a dependency on Response resources. Figure 3 provides an abstract overview of the function sets and resources defined in IEEE 2030.5 and illustrates any dependencies between them. The remainder of this section provides more information about the SEP function sets: Support, Common, and Smart Energy.

IEEE 2030.5中的许多功能集都依赖于其他资源。 例如,DRLC功能集依赖于响应资源。 图3提供了IEEE 2030.5中定义的功能集和资源的抽象概述,并说明了它们之间的任何依存关系。 本节的其余部分提供有关SEP功能集的更多信息:支持,通用和智能能源。

IEEE 2030.5 概述_第1张图片

 

Support Resources

Included in the Support services is the DeviceCapability Function Set: a set of discovery services that allow services provided by a device to be ascertained by other devices. Servers must support the DeviceCapability Function Set, which then provides the URIs of the additional services that it supports.

支持服务中包括DeviceCapability功能集:一组发现服务,可让其他设备确定由设备提供的服务。服务器必须支持DeviceCapability功能集,然后该功能集提供其支持的其他服务的URI。

 

The Response Function Set is also provided that allows a device to respond to requests indicating that the message was received, opt-in/opt-out or other status information. Several functions sets use the responseRequired attribute to indicate whether or not a particular event requires a response from the client.

还提供了响应功能集,该功能集允许设备响应指示已接收到消息的请求,选择加入/退出或其他状态信息。多个函数集使用"responseRequired''属性来指示特定事件是否需要客户端的响应。

 

Other function sets include EndDevice, FunctionSetAssignments, Subscription/Notification Mechanism and Time. The EndDevice Function Set provides an interface that is used to exchange information related to a client. The FunctionSetAssignments Function Set defines a collection of function set instances. This allows for a service provider to indicate which function set instances are used for a particular program. In the DER use case, FunctionSetAssignments are used to group inverters into operational areas which can be commanded via a single fleet-wide message.

其他功能集包括EndDevice,FunctionSetAssignments,订阅/通知机制和时间。 EndDevice功能集提供了一个用于交换与客户端有关的信息的接口。 FunctionSetAssignments功能集定义功能集实例的集合。这允许服务提供者指示哪些功能集实例用于特定程序。在DER用例中,FunctionSetAssignments用于将逆变器分组为可通过单个车队范围内的消息进行命令的操作区域。

 

The Subscription/Notification Mechanisms Function Set provides information on all resources to which a client has subscribed. Subscriptions allow rapid notification of a change in a given resource. The client implements a notification resource to receive the notifications sent by the server. Although technically not required by the base IEEE 2030.5, the use of subscriptions for communications between utilities and aggregators and commercial plants improves network efficiency.

订阅/通知机制功能集提供有关客户端已订阅的所有资源的信息。通过订阅,可以快速通知给定资源的更改。客户端实现一个通知资源,以接收服务器发送的通知。尽管从根本上说,基本IEEE 2030.5并没有技术要求,但使用公用事业与聚合器和商业工厂之间的通信进行订阅可以提高网络效率。

 

A server uses the Time Function Set to distribute the current time to clients. Time is expressed in Coordinated Universal Time (UTC). Server event timing is based on this function set.

服务器使用时间功能集将当前时间分配给客户端。时间以世界标准时间(UTC)表示。服务器事件计时基于此功能集。

 

Common Resources

The Common resources cover functionality needed to obtain the current time, query network interface status, determine power status of devices, and query devices for manufacturer information. Services for software upgrades to devices are included as part of the Common resources. An event logging capability is also available via the common resources. A function set may have one or more events defined and these can be posted to a server providing the Log Event Function Set.

通用资源涵盖了获取当前时间,查询网络接口状态,确定设备的电源状态以及向设备查询制造商信息所需的功能。 公用资源中包含用于设备软件升级的服务。 事件记录功能也可以通过公共资源获得。 一个功能集可能定义了一个或多个事件,这些事件可以发布到提供“日志事件功能集”的服务器上。

 

Smart Energy Resources

These resources were formerly known as the Application Layer Business Object Messages and provide the core functionality related to business objectives of utilities or energy aggregators. IEEE 2030.5 supports the following service related function sets:

这些资源以前称为应用程序层业务对象消息,提供与公用事业或能源聚合商的业务目标相关的核心功能。 IEEE 2030.5支持以下与服务相关的功能集:

• Billing

• Demand Response/Load Control (DRLC)

• Distributed Energy Resources

• Messaging

• Metering

• Energy Flow Reservation

• Prepayment

• Pricing

•帐单

•需求响应/负载控制(DRLC)

•分布式能源

•消息传递

•测光

•能量流预留

• 预付款

• 价钱

Several of the Smart Energy Resources function sets have dependencies on other function sets (as shown in Figure 3). The remainder of this section provides more detailed information about each of the function sets relevant to DER integration as currently adopted in California Rule 21. The other smart energy resources defined by IEEE 2030.5 may become relevant as the use cases mature. It should be noted that, while much attention is currently focused on energy, IEEE 2030.5 is applicable to other commodities such as water and natural gas.

一些“智能能源资源”功能集与其他功能集有依存关系(如图3所示)。 本节的其余部分提供了有关加利福尼亚州第21条当前采用的与DER集成相关的每个功能集的更详细的信息。随着用例的成熟,由IEEE 2030.5定义的其他智能能源也可能变得相关。 应该注意的是,尽管当前很多注意力集中在能源上,但是IEEE 2030.5适用于其他商品,例如水和天然气。

 

Distributed Energy Resources

This function set provides an interface for controlling Distributed Energy Resources (DER); i.e. provides the capability for servers to expose controls to client devices. Client devices of this function set include solar inverters, generation units, and battery storage systems. The DER Function Set can also be used in conjunction with the Response Function Set to provide confirmation of events.

该功能集提供了用于控制分布式能源(DER)的接口; 即为服务器提供了向客户端设备公开控件的功能。 此功能集的客户端设备包括太阳能逆变器,发电单元和电池存储系统。 DER功能集也可以与响应功能集结合使用以提供事件确认。

The DER Function Set can be divided into two categories: DER Controls and DER Settings.

DER功能集可分为两类:DER控制和DER设置。

DER Controls

A DER Control is based on an IEEE 2030.5 event. The characteristics of an IEEE 2030.5 event are that it has a definite start time and a finite duration. Examples of a DER Control include setting a fixed output power, setting a fixed power factor, setting a Volt-VAr curve, and setting a Volt-Watt curve. Another important characteristic of an IEEE 2030.5 event is that it can be applied to a group of devices, not just a single device.

DER控制基于IEEE 2030.5事件。 IEEE 2030.5事件的特征是它具有确定的开始时间和有限的持续时间。 DER控制的示例包括设置固定的输出功率,设置固定的功率因数,设置Volt-VAr曲线和设置Volt-Watt曲线。 IEEE 2030.5事件的另一个重要特征是它可以应用于一组设备,而不仅仅是一个设备。

 

DER Settings

DER Settings exist under the EndDevice Function Set. Since they are a part of EndDevice, they can only be applied to a single device – that is, you cannot apply a DER Setting to a group of devices unless those devices are all aggregated under a single EndDevice. Examples of a DER Setting include connect/disconnect and maximum output power limit.

DER设置位于EndDevice功能集中。 由于它们是EndDevice的一部分,因此只能将它们应用于单个设备–也就是说,除非将这些设备全部聚集在单个EndDevice下,否则您不能将DER设置应用于一组设备。 DER设置的示例包括连接/断开连接和最大输出功率限制。

 

Metering

The Metering Function Set provides interfaces to exchange measurement information such as reading type and meter reading results. The Metering Function Set provides a collection of meter readings for a usage point. Each set of meter readings are associated with a meter reading type that is derived from the definitions provided by IEC 61968-9. Information such as the commodity being measured, the flow direction, and accumulation behavior of the meter is supplied by the ReadingType.

计量功能集提供用于交换测量信息(如读数类型和仪表读数结果)的接口。计量功能集提供使用点的计量读数集合。每套抄表都与一种抄表类型相关,该抄表类型是从IEC 61968-9提供的定义中得出的。由ReadingType提供诸如被测商品,流向和仪表的累积行为等信息。

 

The Metering Function Set supports the ability to perform instantaneous readings, readings of summed values, and interval data, as well as many additional measurements. Usage data can be summed across time of use (TOU) tiers and/or consumption blocks. Meter data mirroring is supported that allows for a function set server to report data for itself as well as for the meter it is mirroring. This functionality is particularly useful for meters that may be unable to serve their own data due to various constraints such as battery limitations.

计量功能集支持执行瞬时读数,总值读数和间隔数据以及许多其他测量的功能。使用情况数据可以跨使用时间(TOU)层和/或消耗块进行汇总。支持仪表数据镜像,这允许功能集服务器为其自身以及所镜像的仪表报告数据。对于由于各种限制(例如电池限制)而可能无法提供其自身数据的仪表,此功能特别有用。

 

There are many log events that may be raised by the Metering Function Set to report various operating condition events and alerts (e.g., ground fault, service disconnect). These events are posted to the LogEvent Function Set.

计量功能集可能会引发许多日志事件,以报告各种运行状况事件和警报(例如,接地故障,服务断开)。这些事件将发布到LogEvent功能集中。

 

Demand Response Load Control (DRLC) Function Set

Client devices of this function set include thermostats or other devices that are capable of adjusting their electrical load. Server devices of this function set include premises energy management systems that may be acting as a proxy for upstream systems. Load control event parameters are distributed to devices through the use of the EndDeviceControl resource, where each event may be targeted toward a specific device type. The EndDeviceControl resource exposes all of the necessary attributes that load control clients need to process an event including start time, duration, and if randomization is needed at the start and end of the event.

此功能集的客户端设备包括恒温器或其他能够调节其电负载的设备。此功能集的服务器设备包括房屋能源管理系统,可以充当上游系统的代理。负载控制事件参数通过使用EndDeviceControl资源分配给设备,每个事件都可以针对特定设备类型。 EndDeviceControl资源公开了负载控制客户端处理事件所需的所有必要属性,包括开始时间,持续时间,以及是否需要在事件的开始和结束时进行随机化。

 

Because DRLC can exert direct control over the device, the EndDeviceControl resource is a subscribable resource. When a device subscribes to the resource, it will be notified of any changes or updates. If a device does not subscribe, it must poll the resource for new information. When a response is requested, the URI for the corresponding Response Function Set is provided in the EndDeviceControl resource for the event. Clients can POST responses for each action taken on the event (e.g. “event received”, “event started”, “event completed”).

因为DRLC可以直接控制设备,所以EndDeviceControl资源是可订阅的资源。当设备订阅资源时,将通知它任何更改或更新。如果设备未订阅,则它必须轮询资源以获取新信息。请求响应时,将在事件的EndDeviceControl资源中提供对应的响应功能集的URI。客户可以针对该事件采取的每项操作(例如“收到事件”,“事件已开始”,“事件已完成”)发布响应。

 

An additional resource is provided as part of the DRLC Function Set: LoadShedAvailability. Clients can POST their ability to shed load to a server. The amount of load reported by the client represents a commitment to the amount of load that it can provide to each demand response program it supports. Updates to the LoadShedAvailability resource are dependent on the update thresholds provided by the server.

作为DRLC功能集的一部分,提供了附加资源:LoadShedAvailability。客户端可以发布其减轻服务器负载的能力。客户报告的负载量表示对它可以提供给它支持的每个需求响应程序的负载量的承诺。 LoadShedAvailability资源的更新取决于服务器提供的更新阈值。

 

Energy Flow Reservation

The Energy Flow Reservation Function Set provides an interface for reserving and scheduling energy flow events (both charge and discharge). This function set can be used by devices that may draw large amounts of power such as plug-in electric vehicles (e.g., fast-charging stations), or storage devices (batteries).

能量流保留功能集提供了一个界面,用于保留和安排能量流事件(充电和放电)。 此功能集可用于可能消耗大量电能的设备(例如,插电式电动汽车(例如,快速充电站)或存储设备(电池))使用。

 

Servers of this function accept FlowReservationRequests from client devices and may manage the client behavior in order to distribute the load across multiple reservation periods.

具有此功能的服务器从客户端设备接受FlowReservationRequests,并可以管理客户端行为,以便在多个保留期内分配负载。

 

Pricing

The Pricing Function Set provides for the distribution of the tariff structure of the service provider. The tariff structures supported by IEEE 2030.5 include flat-rate, time-of-use, consumption, hourly day ahead, and real-time tariffs. Application specific tariffs are also supported for devices (e.g., PEV, DER), as well as special event-based prices like critical peak pricing (CPP).

定价功能集提供服务提供商的资费结构的分配。 IEEE 2030.5支持的费率结构包括固定费率,使用时间,消费,提前小时和实时费率。 设备还支持特定于应用的费率(例如PEV,DER),以及基于特殊事件的价格,例如关键峰值定价(CPP)。

 

Much like the DRLC Function Set, the Pricing Function Set contains resources that are subscribable. The Response Function Set may also be utilized to understand a client’s reaction to a given price.

与DRLC功能集非常相似,定价功能集包含可订阅的资源。 响应功能集还可用于了解客户对给定价格的反应。

 

 

参考资料:

https://cdn2.hubspot.net/hubfs/4533567/IEEE-2030-5-and-IEC-61850-comparison-082319.pdf

WHITE PAPER: IEC 61850 and IEEE 2030.5: A Comparison of 2 Key Standards for DER Integration: An Update

This paper provides an overview of the IEEE 2030.5 standard and a comparison with the IEC 61850 information model for DER.

 

你可能感兴趣的:(IEEE,2030.5)