HashMap jdk1.7和1.8概述

大家好,我是烤鸭:
这是一篇关于HashMap的概述和底层原理的介绍。算是网上很多帖子的综合和我自己的一点想法。
HashMap在jdk1.8以前是数组+链表。

在jdk1.8以后是数组+链表+红黑树。一点点分析数据结构。


1. Map中的entry对象:

static class Node implements Map.Entry {
        final int hash;
        final K key;
        V value;
        Node next;

        Node(int hash, K key, V value, Node next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry e = (Map.Entry)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

2.load-factor负载因子和capacity容量

简单说一下存储就是node中key计算的hash值决定存储在数组中的位置的bucket(桶)。

如果hash值一样,数组中该位置的bucket(桶)里就会变成链表。
在jdk1.8,链表的长度如果>8,就会变成红黑树。

与HashMap实例相关的参数常用的有两个,load-factor负载因子和capacity容量。
简单解释一下两个参数:
loadFactor 就是创建hashMap什么时间扩容。举个例子来说:

默认new一个HashMap的capacity:16,loadFactor:0.75。

/**
     * Constructs an empty HashMap with the default initial capacity
     * (16) and the default load factor (0.75).
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    /**
     * The load factor used when none specified in constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
16*0.75 = 12;
    也就是当Map的大小达到12的时候,开始扩容。

    reSize方法:

/**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node[] resize() {
        Node[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node[] newTab = (Node[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node loHead = null, loTail = null;
                        Node hiHead = null, hiTail = null;
                        Node next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

看这句:

else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
     oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
就知道,每次扩容都是之前的2倍。第一次的大小是16,扩容后就变成32。
这里注意一下1.7和1.8的变化;
先说一下1.7的源码:

转自:http://blog.csdn.net/yimi099/article/details/62043566

3. 1.7源码

void resize(int newCapacity) {   //传入新的容量  
    Entry[] oldTable = table;    //引用扩容前的Entry数组  
    int oldCapacity = oldTable.length;  
    if (oldCapacity == MAXIMUM_CAPACITY) {  //扩容前的数组大小如果已经达到最大(2^30)了  
        threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了  
        return;  
    }  
  
    Entry[] newTable = new Entry[newCapacity];  //初始化一个新的Entry数组  
    transfer(newTable);                         //!!将数据转移到新的Entry数组里  
    table = newTable;                           //HashMap的table属性引用新的Entry数组  
    threshold = (int) (newCapacity * loadFactor);//修改阈值  
} 

void transfer(Entry[] newTable) {  
    Entry[] src = table;                   //src引用了旧的Entry数组  
    int newCapacity = newTable.length;  
    for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组  
        Entry e = src[j];             //取得旧Entry数组的每个元素  
        if (e != null) {  
            src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)  
            do {  
                Entry next = e.next;  
                int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置  
                e.next = newTable[i]; //标记[1]  
                newTable[i] = e;      //将元素放在数组上  
                e = next;             //访问下一个Entry链上的元素  
            } while (e != null);  
        }  
    }  
}  

1.7里是每次扩容都去计算元素的hash值,从而改变该元素在数组中的位置。capacity变了,位置自然就要改变。

1.8做了优化:

do {
            next = e.next;
            if ((e.hash & oldCap) == 0) {
                if (loTail == null)
                    loHead = e;
                else
                    loTail.next = e;
                loTail = e;
            }
            else {
                if (hiTail == null)
                    hiHead = e;
                else
                    hiTail.next = e;
                hiTail = e;
            }
        } while ((e = next) != null);
        if (loTail != null) {
            loTail.next = null;
            newTab[j] = loHead;
        }
        if (hiTail != null) {
            hiTail.next = null;
            newTab[j + oldCap] = hiHead;
        }

解释一下什么意思。

转自:http://blog.csdn.net/brycegao321/article/details/52527236/

(e.hash & oldCap) == 0写的很赞!!! 它将原来的链表数据散列到2个下标位置,  概率是当前位置50%,高位位置50%。     你可能有点懵比, 下面举例说明。  上边图中第0个下标有496和896,  假设它俩的hashcode(int型,占4个字节)是

resize前:
496的hashcode: 00000000  00000000  00000000  00000000
896的hashcode: 01010000  01100000  10000000  00100000
oldCap是16:       00000000  00000000  00000000  00010000

496和896对应的e.hash & oldCap的值为0, 即下标都是第0个。

resize后:
496的hashcode: 00000000  00000000  00000000  00000000
896的hashcode: 01010000  01100000  10000000  00100000
oldCap是32:       00000000  00000000  00000000  00100000

496和896对应的e.hash & oldCap的值为0和1, 即下标都是第0个和第16个。

因为hashcode的第n位是0/1的概率相同, 理论上链表的数据会均匀分布到当前下标或高位数组对应下标。

再说一下其他参数:
bucket桶:
数组中每一个位置上都放有一个桶,每个桶里就是装一个链表,链表中可以有很多个元素(entry),这就是桶的意思。也就相当于把元素都放在桶中。
size:

HashMap的实例中实际存储的元素的个数。

4. threshold:

threshold = capacity * loadFactor,当Size>=threshold的时候,那么就要考虑对数组的扩增了,也就是说,这个的意思就是衡量数组是否需要扩增的一个标准。

/**
 * The bin count threshold for using a tree rather than list for a
 * bin.  Bins are converted to trees when adding an element to a
 * bin with at least this many nodes. The value must be greater
 * than 2 and should be at least 8 to mesh with assumptions in
 * tree removal about conversion back to plain bins upon
 * shrinkage.
 */
static final int TREEIFY_THRESHOLD = 8;
对于一个桶(容器)来说,桶的统计临界值比起list集合更用于树。
当向有多很节点的桶添加一个元素的时候,桶转换成树。这个很多节点就是8。
再说下扩容的过程:

是否扩容主要看:threshold这个参数,threshold = capacity*loadFactor,初始值是threshold = 16*0.75=12,第一次扩容capacity=capacity*2=32,threshold =threshold *2=24。

5. 1.8源码的put方法

再说一下put方法:

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node[] tab; Node p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;   //初始化桶,默认16个元素
    if ((p = tab[i = (n - 1) & hash]) == null)   //如果第i个桶为空,创建Node实例
        tab[i] = newNode(hash, key, value, null);
    else { //哈希碰撞的情况, 即(n-1)&hash相等
        Node e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;   //key相同,后面会覆盖value
        else if (p instanceof TreeNode)
            e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);  //红黑树添加当前node
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);  //链表添加当前元素
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);  //当链表个数大于等于7时,将链表改造为红黑树
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;            //覆盖key相同的value并return, 即不会执行++size
        }
    }
    ++modCount;
    if (++size > threshold)    //key不相同时,每次插入一条数据自增1. 当size大于threshold时resize
        resize();
    afterNodeInsertion(evict);
    return null;
}
提一个新的名词,哈希碰撞。
如果hashMap的key和key的hashCode找到数组中同一个位置,就是哈希碰撞。

哈希碰撞是产生链表的原因。

最后!!!!

1,HashMap的初始容量是16个, 而且容量只能是2的幂。  每次扩容时都是变成原来的2倍。
2,默认的负载因子是0.75f,threshold:16*0.75=12。即默认的HashMap实例在插入第13个数据时,会扩容为32。
3,JDK1.8对HashMap的优化, 哈希碰撞后的链表上达到8个节点时要将链表重构为红黑树,  查询的时间复杂度变为O(logN)。
4,通常hashMap查询的时间复杂度是O(N),1.8以后红黑树的查询的时间复杂度是O(logN)。极少数情况不会出现哈希碰撞,那是数组,查询的时间复杂度是O(1)。
5,初始化数组或者扩容为2倍,初值为空时,则根据初始容量开辟空间来创建数组。否则, 因为我们使用2的幂定义数组大小,数据要么待在原来的下标, 或者移动到新数组的高位下标。 

你可能感兴趣的:(JAVA)