- 自然语言处理_tf-idf
_feivirus_
算法机器学习和数学自然语言处理tf-idf逆文档频率词频
importpandasaspdimportmath1.数据预处理docA="Thecatsatonmyface"docB="Thedogsatonmybed"wordsA=docA.split("")wordsB=docB.split("")wordsSet=set(wordsA).union(set(wordsB))print(wordsSet){'on','my','face','sat',
- 关键字提取
蓝色滑行
关键词提取importpandasaspdimportjieba.analyse#导入关键词库读取文本fn=open('d:/collect.txt',encoding='UTF-8')string_data=fn.read()fn.close()关键词提取"TF-IDF(termfrequency-inversedocumentfrequency)是一种针对关键字的统计分析方法,用来评估关键字或
- 01-30
姬汉斯
今天看的是关于文档识别和分类的处理案例。利用多项式贝叶斯公式计算TF-IDF值,以此计算出文档中的词频,文档频率等数据属性,TFIDFVectorizer类用于进行整理,NTLK包进行标注处理,计算文档中各个字符的权重,通过分类器进行分类处理。Sklearn在其中依然有巨大作用,还在熟悉其特性
- fastText 情感分类
dreampai
情感分类任务就是看一段文本,然后分辨这个人是否喜欢他们在讨论的这个东西。情感分类一个最大的挑战就是可能标记的训练集没有那么多,但是有了词嵌入,即使只有中等大小的标记的训练集,你也能构建一个不错的情感分类器image.pngimage.png假设有一个句子:“这个衣服质量不错”通过分词、去除停用词等预处理操作,得到“衣服/质量/不错”获取“衣服”、“质量”、“不错”的对应词向量(可以通过TF-IDF
- 文本分析之关键词提取(TF-IDF算法)
富士达幸运星
人工智能机器学习tf-idf
文本分析之关键词提取:解锁信息精髓的钥匙在信息爆炸的时代,我们每天都被海量的文本数据所包围。无论是新闻报道、学术论文、社交媒体帖子,还是电子邮件和聊天记录,文本都是我们获取知识和信息的主要载体。然而,面对如此庞大的数据量,如何快速准确地提取出其中的关键信息,成为了文本分析领域的一个重要课题。关键词提取,作为文本分析的核心技术之一,正是帮助我们解锁文本信息精髓的关键工具。一、什么是关键词提取?关键词
- 文本数据分析-(TF-IDF)(2)
红米煮粥
数据分析tf-idfpython
文章目录一、TF-IDF与jieba库介绍1.TF-IDF概述2.jieba库概述二、TF-IDF与jieba库的结合1.结合2.提取步骤三,代码实现1.导入必要的库读取文件:3.将文件路径和内容存储到DataFrame4.加载自定义词典和停用词5.分词并去除停用词TF-IDF(TermFrequency-InverseDocumentFrequency)与jieba库在文本处理领域有着紧密的联系
- 文本分析之关键词提取(TF-IDF算法)
SEVEN-YEARS
tf-idf
键词提取是自然语言处理中的一个重要步骤,可以帮助我们理解文本的主要内容。TF-IDF(TermFrequency-InverseDocumentFrequency)是一种常用的关键词提取方法,它基于词频和逆文档频率的概念来确定词语的重要性。准备工作首先,我们需要准备一些工具和库,包括Pandas、jieba(结巴分词)、sklearn等。Pandas:用于数据处理。jieba:用于中文分词。skl
- vue 精选评论词云 集成echarts-wordcloud TF-IDF算法
麦麦大数据
可视化研究vue.jsecharts前端tf-idf
这一期在我们的系统里集成词云组件,开发的功能是景区精选评论的词云展示功能。这个界面的逻辑是这样的:在数据框里输入城市,可以是模糊搜索的,选择城市;选择城市后,发往后台去查询该城市的精选评论,由于一个城市会有很多景点,所以精选评论也有很多,采用TF-IDF算法,计算关键词,返回给前端,使用echarts词云组件进行可视化;再次输入城市,可以切换城市,同时词云会重新渲染。1词云页面开发首先前端安装词云
- spark应用程序转换_4.Spark特征提取、转换和选择 - 简书
weixin_39956182
spark应用程序转换
在实际机器学习项目中,我们获取的数据往往是不规范、不一致、有很多缺失数据,甚至不少错误数据,这些数据有时又称为脏数据或噪音,在模型训练前,务必对这些脏数据进行处理,否则,再好的模型,也只能脏数据进,脏数据出。这章我们主要介绍对数据处理涉及的一些操作,主要包括:特征提取特征转换特征选择4.1特征提取特征提取一般指从原始数据中抽取特征。4.1.1词频-逆向文件频率(TF-IDF)词频-逆向文件频率(T
- 自然语言处理NLP之中文分词和词性标注
陈敬雷-充电了么-CEO兼CTO
自然语言处理
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录一、Python第三方库jieba(中文分词、词性标注)特点二、jieba中文分词的安装关键词抽取基于TF-IDF算法TF-IDF原理介绍基于TextRank算法的关键词抽取textRank算法原理介绍总结一、Python第三方库jieba
- 自然语言处理系列三十七》词频-逆文档频率TF-IDF》Java代码实现
陈敬雷-充电了么-CEO兼CTO
自然语言处理javanlpaiAI编程chatgptgpt
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列三十七Java代码实现词频-逆文档频率(TF-IDF)TF-IDF的Python代码实现总结自然语言处理系列三十七Java代码实现词频-逆文档频率(TF-IDF)上篇文章讲了算法原理,这篇文章通过Java实现TF-IDF,再
- 数据库面试题-ElasticSearch
@Corgi
Java面试题数据库elasticsearch大数据java面试题
数据库面试题-ElasticSearch1、ElasticSearch是什么?2、谈谈ElasticSearch分词与倒排索引的原理?3、说说ElasticSearch分段存储的思想?4、说说你对ElasticSearch段合并的策略思想的认识?5、知道什么是文本相似度TF-IDF吗?6、说说ElasticSearch写索引的逻辑?7、说说ElasticSearch集群中搜索数据的过程?8、说说E
- gensim 实现 TF-IDF
木下瞳
NLP大模型tf-idf人工智能
目录介绍代码介绍TF-IDF(TermFrequency-InverseDocumentFrequency)含义:TF(TermFrequency):词频,是指一个词语在当前文档中出现的次数。它衡量的是词语在文档内部的重要性,直观上讲,一个词语在文档中出现越频繁,表明它对该文档内容描述的贡献越大。IDF(InverseDocumentFrequency):逆文档频率,是一个词语在整个文档集合中的稀
- 机器学习-特征提取-字典特征提取-文本特征提取-TF-IDF
涓涓自然卷
一、特征提取概要:1、定义:将任意数据(如文本或图像)转换为可用于机器学习的数字特征。注:特征值化是为了计算机更好的去理解数据。2、特征提取分类:字典特征提取(特征离散化)文本特征提取图像特征提取(深度学习介绍)3、特征提取API:sklearn.feature_extraction二、字典特征提取:作用:对字典数据进行特征值化。1、API:fromsklearn.feature_extracti
- SPSSAU【文本分析】|词云、词定位等
spssau
人工智能文本分析文本挖掘数据分析
词云分析等文本分析模块中,最重要和最基础的为展示分词结果,通常是使用词云进行展示。在‘词云分析等’中,SPSSAU提供四种功能,分别是词云分析、自定义词云、词定位和tf-idf,本文档使用‘体验DEMO数据’,其来源于2023年12月住建委的“建设要闻”栏目下面41条新闻全文内容,共129kb。接下来说明将基于该数据进行展示和说明。词云分析进入文本分析时,首先可以看到词云结果,本案例时结果如下:词
- Elasticsearch实战阅读笔记
Wyat,sahar
elasticsearchelasticsearch
firstday1.默认情况所有数据全部索引2.es索引为倒排序索引.3.计算文档相关性得分的算法是TF-IDF词频-逆文档频率4.elasticsearch不支持事务!!5.索引文本"bicyclerace"分析步骤将产生"bicycle""race""cycling""racing"(还有现代分词..nb)6.面向文档,意味着索引和搜索数据的最小单位是文档7.文档是无模式的理解索引相当于库27
- Spark MLlib
Francek Chen
Spark编程基础spark-mlsparkmllib机器学习
目录一、SparkMLlib简介(一)什么是机器学习(二)基于大数据的机器学习(三)Spark机器学习库MLlib二、机器学习流水线(一)机器学习流水线概念(二)流水线工作过程(三)构建一个机器学习流水线三、特征提取和转换(一)特征提取:TF-IDF(二)特征转换:标签和索引的转化四、分类与回归(一)逻辑斯蒂回归分类器(二)决策树分类器一、SparkMLlib简介(一)什么是机器学习机器学习可以看
- 特征工程:特征构建
林浩杨
数据探索与可视化机器学习数据分析python机器学习算法
目录一、前言二、正文Ⅰ.分类特征重新编码①分类特征②离散特征③多标签类别编码Ⅱ.数值特征重新编码①多项式②多个变量的多项式特征Ⅲ.文本数据的特征构建①文本词频条形图②词袋模型③TF-IDF矩阵三、结语一、前言特征工程中的特征构建的主要目的是生成新的特征,而针对不同的特征,有多种方式可以形成新的特征,例如有针对分类特征、针对数值特征和针对文本特征对其进行生成新的特征。二、正文Ⅰ.分类特征重新编码①分
- 基于python大数据机器学习旅游数据分析可视化推荐系统(完整系统+开发文档+部署教程等资料)
谁不学习揍谁!
大数据自然语言处理可视化python大数据机器学习
基于python大数据机器学习旅游数据分析可视化推荐系统一、项目概述基于机器学习TF-IDF算法SnowNLP大数据的智慧旅游数据分析可视化推荐系统通过数据采集、数据清洗、数据分析、数据可视化的技术,对景区数据进行爬取和收集。以旅游景点数据为基础分析景区热度,挖掘客流量、景区评价等信息,并对分析的结果进行统计。智慧旅游数据分析系统拟实现景区热度、景区展示、游客统计、景区评价、旅游路线等部分。拟定景
- 如何利用大模型结合文本语义实现文本相似度分析?
小小晓晓阳
LLM文心一言pythonnlp
常规的文本相似度计算有TF-IDF,Simhash、编辑距离等方式,但是常规的文本相似度计算方式仅仅能对文本表面相似度进行分析计算,并不能结合语义分析,而如果使用机器学习、深度学习的方式费时费力,效果也不一定能达到我们满意的状态,随着大模型技术的日渐成熟,我们是否可以利用大模型来完成文本相似度分析呢?本文将结合文心一言4.0来介绍两种文本相似度分析的方法:方式一提供prompt,直接调用大模型接口
- TF-IDF入门与实例
lawenliu
我们对文档分析的时候,通常需要提取关键词,中文分词可以使用jieba分词,英文通过空格和特殊字符分割即可。那么分割之后是不是出现频率越高这些词就能越好代表这篇文章描述的内容呢?答案是否定的,比如英文中常见的词a、an等,中文中常见的“的”、“你”等等。有一些词可以通过过滤stopWord词表去掉,但是对于领域文档分析就会遇到更复杂的情况,比如需要把100份文档分到不同的领域,提取每个领域的关键词;
- 大数据笔记--Spark(第五篇)
是小先生
大数据08-Sparkspark
目录一、Spark的调优1、更改序列化为kryo2、配置多临时文件目录3、启动推测执行机制4、某些特定场景,用mapPartitions代替map5、避免使用collect二、Spark的共享变量1、广播变量2、计数器三、VSM算法1、什么是倒排索引表?2、什么是相似度的概念?3、什么是TF-IDF算法4、VSM算法Ⅰ、概念Ⅱ、算法原理Ⅲ、举例一、Spark的调优1、更改序列化为kryoSpark
- 100 个 NLP 面试问题
无水先生
NLP入门到精通人工智能综合自然语言处理面试人工智能
100个NLP面试问题一、说明 对于技术磨练中,其中一项很酷的技能培训是提问。不知道答案并没有多大的错;错就错在不谷歌这些疑问。本篇就是在面试之前,您将此文档复制给自己,做一个系统的模拟实战。二、经典NLP问题(共8题)TF-IDF和ML;从头开始编写TF-IDF。什么是TF-IDF中的归一化?为什么在我们这个时代需要了解TF-IDF,如何在复杂的模型中使用它?解释朴素贝叶斯的工作原理。你可以用
- 【自然语言处理】P1 对文本编码(One-Hot 与 TF-IDF)
脚踏实地的大梦想家
#自然语言处理自然语言处理tf-idf人工智能
目录独热表示(One-hot)TF-IDF此外对文本编码,目标是将自然语言文本表示为向量,从而便于继续处理和分析文本数据。三种常用对文本编码方法如下:独热表示(One-hot)独热表示(One-hotencoding)将句子中的每个单词转换为一个固定长度的二进制向量,其中每个向量表示句子中单词的独热编码。这个过程通常包括建立词库、独热编码两个步骤:#以这两个句子建立独热表示:Timefliesli
- python3.6.国家政策文本分析代码
Luzichang
养老政策神经网络python政策TF/IDF文本处理
根据学习至今的python,和导师吩咐的方向,一共做了5件事:1.政府网http://www.gov.cn/index.htm中养老政策特殊文本爬取与保存。2.基于的TF/IDF多文档关键词抽取。-基于TF-IDF算法的关键词抽取(原文:https://blog.csdn.net/zhangyu132/article/details/52128924)importjieba.analysejieb
- 【SparkML系列3】特征提取器TF-IDF、Word2Vec和CountVectorizer
周润发的弟弟
spark-mltf-idfword2vec
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。###FeatureExtractors(特征提取器)###
- [机器学习]TF-IDF算法
不知迷踪
机器学习机器学习tf-idf人工智能
一.TF-IDF算法概述什么是TF-IDF?词频-逆文档频率(TermFrequency-InverseDocumentFrequency,TF-IDF)是一种常用于文本处理的统计方法,可以评估一个单词在一份文档中的重要程度。简单来说就是可以用于文档关键词的提取。TF-IDF的基本思想:看到下面这段文本,我们应该很容易就能看出“梅西”应该是一个关键词,但是我们如何通过算法的形式让计算机也能够辨别呢
- 使用Gensim库对文本进行词袋、TF-IDF和n-gram方法向量化处理
Yuki_lsq
Gensim库简介机器学习算法需要使用向量化后的数据进行预测,对于文本数据来说,因为算法执行的是关于矩形的数学运算,这意味着我们必须将字符串转换为向量。从数学的角度看,向量是具有大小和方向的几何对象,不需过多地关注概念,只需将向量化看作一种将单词映射到数学空间的方法,同时保留其本身蕴含的信息。Gensim是世界上最大的NLP/信息检索Python库之一,兼具内存高效性和可扩展性。Gensim的可扩
- 剖析Elasticsearch面试题:分词、倒排索引、文本相似度TF-IDF,揭秘分段存储与段合并,解密写索引技巧,应对深翻页问题的实用解决方案!
LiuSirzz
elasticsearch分布式大数据面试
1、谈谈分词与倒排索引的原理当谈到Elasticsearch时,分词与倒排索引是两个关键的概念,理解它们对于面试中展示对Elasticsearch工作原理的理解至关重要。「1.分词(Tokenization):」分词是将文本分解成一个个单独的词汇单元的过程。在Elasticsearch中,分词是搜索引擎索引和查询的基础。以下是一些关键点:分词器(Tokenizer):Elasticsearch使用
- 自然语言处理 TF-IDF
小嗷犬
深度学习自然语言处理tf-idf人工智能
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。个人主页:小嗷犬的个人主页个人网站:小嗷犬的技术小站个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。本文目录TF-IDF简介TF-IDF算法TFIDFTF-IDFTF-IDF的缺点TF-IDF简介TF-IDF(TermFrequency-InverseDocumentFrequency,词频-逆文档频率)是
- log4j对象改变日志级别
3213213333332132
javalog4jlevellog4j对象名称日志级别
log4j对象改变日志级别可批量的改变所有级别,或是根据条件改变日志级别。
log4j配置文件:
log4j.rootLogger=ERROR,FILE,CONSOLE,EXECPTION
#log4j.appender.FILE=org.apache.log4j.RollingFileAppender
log4j.appender.FILE=org.apache.l
- elk+redis 搭建nginx日志分析平台
ronin47
elasticsearchkibanalogstash
elk+redis 搭建nginx日志分析平台
logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队 列,redis的l
- Yii2设置时区
dcj3sjt126com
PHPtimezoneyii2
时区这东西,在开发的时候,你说重要吧,也还好,毕竟没它也能正常运行,你说不重要吧,那就纠结了。特别是linux系统,都TMD差上几小时,你能不痛苦吗?win还好一点。有一些常规方法,是大家目前都在采用的1、php.ini中的设置,这个就不谈了,2、程序中公用文件里设置,date_default_timezone_set一下时区3、或者。。。自己写时间处理函数,在遇到时间的时候,用这个函数处理(比较
- js实现前台动态添加文本框,后台获取文本框内容
171815164
文本框
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w
- 持续集成工具
g21121
持续集成
持续集成是什么?我们为什么需要持续集成?持续集成带来的好处是什么?什么样的项目需要持续集成?... 持续集成(Continuous integration ,简称CI),所谓集成可以理解为将互相依赖的工程或模块合并成一个能单独运行
- 数据结构哈希表(hash)总结
永夜-极光
数据结构
1.什么是hash
来源于百度百科:
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
- 乱七八糟
程序员是怎么炼成的
eclipse中的jvm字节码查看插件地址:
http://andrei.gmxhome.de/eclipse/
安装该地址的outline 插件 后重启,打开window下的view下的bytecode视图
http://andrei.gmxhome.de/eclipse/
jvm博客:
http://yunshen0909.iteye.com/blog/2
- 职场人伤害了“上司” 怎样弥补
aijuans
职场
由于工作中的失误,或者平时不注意自己的言行“伤害”、“得罪”了自己的上司,怎么办呢?
在职业生涯中这种问题尽量不要发生。下面提供了一些解决问题的建议:
一、利用一些轻松的场合表示对他的尊重
即使是开明的上司也很注重自己的权威,都希望得到下属的尊重,所以当你与上司冲突后,最好让不愉快成为过去,你不妨在一些轻松的场合,比如会餐、联谊活动等,向上司问个好,敬下酒,表示你对对方的尊重,
- 深入浅出url编码
antonyup_2006
应用服务器浏览器servletweblogicIE
出处:http://blog.csdn.net/yzhz 杨争
http://blog.csdn.net/yzhz/archive/2007/07/03/1676796.aspx
一、问题:
编码问题是JAVA初学者在web开发过程中经常会遇到问题,网上也有大量相关的
- 建表后创建表的约束关系和增加表的字段
百合不是茶
标的约束关系增加表的字段
下面所有的操作都是在表建立后操作的,主要目的就是熟悉sql的约束,约束语句的万能公式
1,增加字段(student表中增加 姓名字段)
alter table 增加字段的表名 add 增加的字段名 增加字段的数据类型
alter table student add name varchar2(10);
&nb
- Uploadify 3.2 参数属性、事件、方法函数详解
bijian1013
JavaScriptuploadify
一.属性
属性名称
默认值
说明
auto
true
设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传。
buttonClass
”
按钮样式
buttonCursor
‘hand’
鼠标指针悬停在按钮上的样子
buttonImage
null
浏览按钮的图片的路
- 精通Oracle10编程SQL(16)使用LOB对象
bijian1013
oracle数据库plsql
/*
*使用LOB对象
*/
--LOB(Large Object)是专门用于处理大对象的一种数据类型,其所存放的数据长度可以达到4G字节
--CLOB/NCLOB用于存储大批量字符数据,BLOB用于存储大批量二进制数据,而BFILE则存储着指向OS文件的指针
/*
*综合实例
*/
--建立表空间
--#指定区尺寸为128k,如不指定,区尺寸默认为64k
CR
- 【Resin一】Resin服务器部署web应用
bit1129
resin
工作中,在Resin服务器上部署web应用,通常有如下三种方式:
配置多个web-app
配置多个http id
为每个应用配置一个propeties、xml以及sh脚本文件
配置多个web-app
在resin.xml中,可以为一个host配置多个web-app
<cluster id="app&q
- red5简介及基础知识
白糖_
基础
简介
Red5的主要功能和Macromedia公司的FMS类似,提供基于Flash的流媒体服务的一款基于Java的开源流媒体服务器。它由Java语言编写,使用RTMP作为流媒体传输协议,这与FMS完全兼容。它具有流化FLV、MP3文件,实时录制客户端流为FLV文件,共享对象,实时视频播放、Remoting等功能。用Red5替换FMS后,客户端不用更改可正
- angular.fromJson
boyitech
AngularJSAngularJS 官方APIAngularJS API
angular.fromJson 描述: 把Json字符串转为对象 使用方法: angular.fromJson(json); 参数详解: Param Type Details json
string
JSON 字符串 返回值: 对象, 数组, 字符串 或者是一个数字 示例:
<!DOCTYPE HTML>
<h
- java-颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I
bylijinnan
java
public class ReverseWords {
/**
* 题目:颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I.词以空格分隔。
* 要求:
* 1.实现速度最快,移动最少
* 2.不能使用String的方法如split,indexOf等等。
* 解答:两次翻转。
*/
publ
- web实时通讯
Chen.H
Web浏览器socket脚本
关于web实时通讯,做一些监控软件。
由web服务器组件从消息服务器订阅实时数据,并建立消息服务器到所述web服务器之间的连接,web浏览器利用从所述web服务器下载到web页面的客户端代理与web服务器组件之间的socket连接,建立web浏览器与web服务器之间的持久连接;利用所述客户端代理与web浏览器页面之间的信息交互实现页面本地更新,建立一条从消息服务器到web浏览器页面之间的消息通路
- [基因与生物]远古生物的基因可以嫁接到现代生物基因组中吗?
comsci
生物
大家仅仅把我说的事情当作一个IT行业的笑话来听吧..没有其它更多的意思
如果我们把大自然看成是一位伟大的程序员,专门为地球上的生态系统编制基因代码,并创造出各种不同的生物来,那么6500万年前的程序员开发的代码,是否兼容现代派的程序员的代码和架构呢?
- oracle 外部表
daizj
oracle外部表external tables
oracle外部表是只允许只读访问,不能进行DML操作,不能创建索引,可以对外部表进行的查询,连接,排序,创建视图和创建同义词操作。
you can select, join, or sort external table data. You can also create views and synonyms for external tables. Ho
- aop相关的概念及配置
daysinsun
AOP
切面(Aspect):
通常在目标方法执行前后需要执行的方法(如事务、日志、权限),这些方法我们封装到一个类里面,这个类就叫切面。
连接点(joinpoint)
spring里面的连接点指需要切入的方法,通常这个joinpoint可以作为一个参数传入到切面的方法里面(非常有用的一个东西)。
通知(Advice)
通知就是切面里面方法的具体实现,分为前置、后置、最终、异常环
- 初一上学期难记忆单词背诵第二课
dcj3sjt126com
englishword
middle 中间的,中级的
well 喔,那么;好吧
phone 电话,电话机
policeman 警察
ask 问
take 拿到;带到
address 地址
glad 高兴的,乐意的
why 为什么
China 中国
family 家庭
grandmother (外)祖母
grandfather (外)祖父
wife 妻子
husband 丈夫
da
- Linux日志分析常用命令
dcj3sjt126com
linuxlog
1.查看文件内容
cat
-n 显示行号 2.分页显示
more
Enter 显示下一行
空格 显示下一页
F 显示下一屏
B 显示上一屏
less
/get 查询"get"字符串并高亮显示 3.显示文件尾
tail
-f 不退出持续显示
-n 显示文件最后n行 4.显示头文件
head
-n 显示文件开始n行 5.内容排序
sort
-n 按照
- JSONP 原理分析
fantasy2005
JavaScriptjsonpjsonp 跨域
转自 http://www.nowamagic.net/librarys/veda/detail/224
JavaScript是一种在Web开发中经常使用的前端动态脚本技术。在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略)。这一策略对于JavaScript代码能够访问的页面内容做了很重要的限制,即JavaScript只能访问与包含它的
- 使用connect by进行级联查询
234390216
oracle查询父子Connect by级联
使用connect by进行级联查询
connect by可以用于级联查询,常用于对具有树状结构的记录查询某一节点的所有子孙节点或所有祖辈节点。
来看一个示例,现假设我们拥有一个菜单表t_menu,其中只有三个字段:
- 一个不错的能将HTML表格导出为excel,pdf等的jquery插件
jackyrong
jquery插件
发现一个老外写的不错的jquery插件,可以实现将HTML
表格导出为excel,pdf等格式,
地址在:
https://github.com/kayalshri/
下面看个例子,实现导出表格到excel,pdf
<html>
<head>
<title>Export html table to excel an
- UI设计中我们为什么需要设计动效
lampcy
UIUI设计
关于Unity3D中的Shader的知识
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,
- 如何禁止页面缓存
nannan408
htmljspcache
禁止页面使用缓存~
------------------------------------------------
jsp:页面no cache:
response.setHeader("Pragma","No-cache");
response.setHeader("Cache-Control","no-cach
- 以代码的方式管理quartz定时任务的暂停、重启、删除、添加等
Everyday都不同
定时任务管理spring-quartz
【前言】在项目的管理功能中,对定时任务的管理有时会很常见。因为我们不能指望只在配置文件中配置好定时任务就行了,因为如果要控制定时任务的 “暂停” 呢?暂停之后又要在某个时间点 “重启” 该定时任务呢?或者说直接 “删除” 该定时任务呢?要改变某定时任务的触发时间呢? “添加” 一个定时任务对于系统的使用者而言,是不太现实的,因为一个定时任务的处理逻辑他是不
- EXT实例
tntxia
ext
(1) 增加一个按钮
JSP:
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<%
String path = request.getContextPath();
Stri
- 数学学习在计算机研究领域的作用和重要性
xjnine
Math
最近一直有师弟师妹和朋友问我数学和研究的关系,研一要去学什么数学课。毕竟在清华,衡量一个研究生最重要的指标之一就是paper,而没有数学,是肯定上不了世界顶级的期刊和会议的,这在计算机学界尤其重要!你会发现,不论哪个领域有价值的东西,都一定离不开数学!在这样一个信息时代,当google已经让世界没有秘密的时候,一种卓越的数学思维,绝对可以成为你的核心竞争力. 无奈本人实在见地