二分图最大匹配的可行边与必经边。
#include
using namespace std;
typedef long long LL;
typedef int lint;
const lint maxn = 50005;
const lint maxm = 5000000 + 5;
int n,m,tot;
int he[maxn],ne[maxm],ver[maxm],id[maxm];
void Add( int x,int y,int _id ){
ver[++tot] = y;
ne[tot] = he[x];
he[x] = tot;
id[tot] = _id;
}
struct dinic{
static const int N = 5000005;
static const int M = 10000005;
static const lint inf = 0x3f3f3f3f;
int he[N],ne[M],ver[M],d[N],id[M];
lint edge[M];
int s,t,tot;
queue que;
void init( int n ){
for( int i = 0;i <= n;i++ ){
he[i] = 0;
}
tot = 1;
}
void add( int x,int y,lint z,int _id ){
ver[++tot] = y; ne[ tot ] = he[x]; he[x] = tot; edge[ tot ] = z;id[tot] = _id;
ver[++tot] = x; ne[tot] = he[y]; he[y] = tot;edge[tot] = 0;id[tot] = _id;
}
bool bfs(){
memset( d,0,sizeof( d ) );
while( que.size() ) que.pop();
que.push( s );
d[s] = 1;
while( que.size() ){
int x = que.front();
que.pop();
for( int cure = he[x];cure;cure = ne[cure] ){
int y = ver[cure];
if( edge[cure] && !d[y] ){
que.push( y );
d[ y ] = d[x] + 1;
if( y == t ) return 1;
}
}
}
return 0;
}
lint dfs( int x,lint flow ){
if( x== t ) return flow;
lint rest = flow,k;
for( int cure = he[x];cure && rest;cure = ne[cure] ){
int y = ver[cure];
if( edge[cure] && d[ y ] == d[x] + 1 ){
k = dfs( y,min( rest,edge[cure] ) );
if( !k ) d[ y ] = 0;
edge[cure] -= k;
edge[ cure^1 ] += k;
rest -= k;
}
}
return flow - rest;
}
lint max_flow( int x,int y ){
s = x; t = y;
lint maxflow = 0;
lint flow = 0;
while( bfs() )
while( flow = dfs( s,inf ) ) maxflow += flow;
return maxflow;
}
void solve( int S,int T ){
for( int i = S;i <= T;i++ ){
for( int cure=he[i];cure;cure= ne[cure] ){
int y = ver[cure];
if( !edge[cure] ) continue;
Add( i,y,id[cure] );
}
}
}
} g;
int st[maxn],ins[maxn],c[maxn],dfn[maxn],low[maxn];
int num,top,cnt;
void tarjan( int x ){
dfn[x] = low[x] = ++num;
st[++top] = x;ins[x] = 1;
for( int cure= he[x];cure;cure=ne[cure] ){
int y= ver[cure];
if(!dfn[y]){
tarjan(y);
low[x] = min( low[x],low[y] );
}else if(ins[y])
low[x] = min( low[x],dfn[y] );
}
if( dfn[x]==low[x] ){
cnt++;int y;
do{
y = st[top--];ins[y]=0;
c[y] =cnt;
}while(x!=y);
}
}
vector ans;
int main(){
int t;
scanf("%d%d%d",&n,&m,&t);
int S = 0,T = n+m+1;
g.init(T);
for( int i = 1;i <= n;i++ ){
g.add( S,i,1,0 );
}
for( int i = 1;i <= m;i++ ){
g.add( i+n,T,1,0 );
}
for( int x,y,i = 1;i <= t;i++ ){
scanf("%d%d",&x,&y);
g.add( x,y+n,1,i );
}
g.max_flow(S,T);
g.solve(S,T);
for( int i = 0;i <= n+m+1;i++ ){
if(!dfn[i]) tarjan(i);
}
for( int x =1;x <= n;x++ ){
for( int cure = he[x];cure;cure= ne[cure] ){
int y = ver[cure];
if( y == S ) continue;
int _id = id[cure];
if( c[x]!=c[y] ) ans.push_back(_id);
}
}
sort( ans.begin(),ans.end() );
printf("%d\n",ans.size());
if( ans.size() ) {
printf("%d", ans[0]);
for (int i = 1; i < ans.size(); i++) {
printf(" %d", ans[i]);
}
}
puts("");
return 0;
}