- 算力网络技术创新驱动生态协同发展
智能计算研究中心
其他
内容概要算力网络作为数字经济发展的核心基础设施,正经历从单一性能提升向体系化技术协同的范式转变。当前技术创新主要聚焦三大维度:在架构层面,通过异构计算、量子计算与神经形态计算的融合,突破传统芯片制程限制;在调度层面,依托分布式计算与流批处理技术,实现跨边缘节点、工业互联网平台与超算中心的资源动态编排;在生态层面,围绕能效管理、安全标准与算法优化构建全链条能力,支撑金融风险评估、基因测序等高复杂度场
- 边缘计算(Edge Computing)
Dream Algorithm
边缘计算人工智能
边缘计算(EdgeComputing)是一种分布式计算范式,它将数据处理和存储功能从传统的集中式云端转移到靠近数据源的网络边缘设备(如路由器、网关、本地服务器或终端设备)。边缘计算的目标是减少数据传输延迟、降低带宽压力,并提高系统的实时性和可靠性。边缘计算的核心概念靠近数据源边缘计算将计算资源部署在靠近数据生成的地方,而不是将所有数据发送到远程云端处理。分布式架构边缘计算采用分布式架构,将计算任务
- Pytorch 张量的scatter_add_方法介绍
qq_27390023
pytorch人工智能python
torch.Tensor.scatter_add_是PyTorch中的一个原地操作(in-placeoperation),用于将一个源张量(src)中的值根据指定的索引(index)累加到目标张量(self)中。它常用于分布式计算、加权聚合以及自定义深度学习层等场景。函数签名Tensor.scatter_add_(dim,index,src)→Tensor参数说明dim(int):指定沿着哪个维度
- zookeeper程序员指南
weixin_30326741
java运维shell
1简介本文是为想要创建使用ZooKeeper协调服务优势的分布式应用的开发者准备的。本文包含理论信息和实践信息。本指南的前四节对各种ZooKeeper概念进行较高层次的讨论。这些概念对于理解ZooKeeper是如何工作的,以及如何使用ZooKeeper来进行工作都是必要的。这几节没有代码,但却要求读者对分布式计算相关的问题较为熟悉。本文的大多数信息以可独立访问的参考材料的形式存在。但是,在编写第一
- 后端架构师必知必会系列:分布式计算与任务调度
AI天才研究院
AI大模型企业级应用开发实战架构师必知必会系列大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.背景介绍分布式计算与任务调度随着互联网公司对数据量和业务处理需求的提升,单体应用已无法满足用户对高性能、可靠性及快速响应时间的要求。为了应对这些挑战,目前各大互联网公司都在寻求将单体应用拆分为微服务架构。但是由于系统的复杂度及开发人员的增加,引入微服务架构带来的复杂度也是需要考虑的问题。比如:服务之间如何通信?如何做服务发现?什么时候集群化?部署方式又该怎样?……等
- Hadoop:分布式计算平台初探
dccrtbn6261333
大数据运维java
Hadoop是一个开发和运行处理大规模数据的软件平台,是Apache的一个用java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算。Hadoop框架中最核心设计就是:MapReduce和HDFS。MapReduce提供了对数据的计算,HDFS提供了海量数据的存储。MapReduceMapReduce的思想是由Google的一篇论文所提及而被广为流传的,简单的一句话解释M
- 探秘开源项目 MapReduce:分布式计算的新篇章
褚知茉Jade
探秘开源项目MapReduce:分布式计算的新篇章去发现同类优质开源项目:https://gitcode.com/在大数据处理领域,一个名字始终熠熠生辉,那就是。这是一个由Google提出的并被广泛应用的编程模型,用于大规模数据集的并行计算。本文将带你深入了解这一开源实现的魅力,分析其技术原理,探讨它的应用场景,并揭示它独特的特性。项目简介该项目是ChubbyJiang对原始GoogleMapRe
- MapReduce:分布式计算的基石
Earth explosion
mapreduce大数据
MapReduce是一种用于处理和生成大数据集的编程模型,以及一个用于执行该模型的关联实现。它使得在大型商用硬件集群(数千台机器)上进行并行处理海量数据成为可能。本文将深入探讨MapReduce的核心概念、工作原理、应用场景以及一些高级主题。核心概念:分而治之MapReduce的核心思想是“分而治之”。它将复杂的计算任务分解成两个主要阶段:Map阶段和Reduce阶段。Map阶段:输入数据被分割成
- 分布式计算入门(PySpark处理NASA服务器日志)
闲人编程
Python数据分析实战精要服务器运维统计分析日志NASA服务器分布式计算PySpark
目录分布式计算入门(PySpark处理NASA服务器日志)1.引言2.分布式计算概述2.1分布式计算的基本概念2.2ApacheSpark与PySpark3.NASA服务器日志数据集介绍3.1数据背景3.2数据格式与挑战4.PySpark基础与分布式日志处理4.1PySpark基本架构4.2日志数据加载与解析4.3数据清洗与内存优化4.4GPU加速与SparkRAPIDS5.实验环境与依赖库6.数
- DeepSeek smallpond搅动大数据风云
彭铖洋
javascriptreactjs
DuckDB走向分布式?DeepSeek的smallpond涉足大数据DuckDB!降维打击传统大数据领域,搅动中台数据工程风云!DeepSeek正在利用smallpond(一种新的、简单的分布式计算方法)推动DuckDB超越其单节点根源。但它是否解决了可扩展性挑战——还是带来了新的权衡?DeepSeek最近搞了个大新闻。他们的R1模型在2025年1月发布时,就直接干翻了OpenAI的O1等竞争对
- hadoop框架与核心组件刨析(四)MapReduce
小刘爱喇石( ˝ᗢ̈˝ )
hadoopmapreduce大数据
MapReduce是一种用于大规模数据处理的编程模型和计算框架,最初由Google提出,后来由ApacheHadoop实现并广泛应用。它的核心思想是将数据处理任务分解为两个阶段:Map和Reduce,并通过分布式计算并行处理海量数据。MapReduce的核心思想分而治之:将大规模数据集分割成多个小块,分布到集群中的多个节点上并行处理。Map阶段:将输入数据转换为键值对(Key-ValuePair)
- 腾讯云大模型知识引擎驱动DeepSeek满血版能源革命大模型:架构、优势与产业变革
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3腾讯云能源架构
为了进一步细化分析腾讯云与DeepSeek的“满血版”能源革命大模型,以下是更深入的解析,涵盖其技术细节、创新点、对能源产业的具体影响及潜在未来发展。1.架构深度解析DeepSeek的“满血版”大模型的架构设计基于专家混合(MoE)和分布式计算的高效协同,进一步增强了处理大规模能源数据的能力。专家混合(MoE)架构动态专家选择:MoE架构使得模型在执行任务时,可以根据具体的输入数据选择最合适的专家
- 大数据Hadoop集群运行程序
赵广陆
hadoophadoopbigdatamapreduce
目录1运行自带的MapReduce程序2常见错误1运行自带的MapReduce程序下面我们在Hadoop集群上运行一个MapReduce程序,以帮助读者对分布式计算有个基本印象。在安装Hadoop时,系统给用户提供了一些MapReduce示例程序,其中有一个典型的用于计算圆周率的Java程序包,现在运行该程序。该jar包文件的位置和文件名是“~/hadoop-3.1.0/share/Hadoop/
- 工业级Pandas性能优化:Dask/Modin实战教程
闲人编程
Python数据分析实战精要pandas性能优化分布式GPU加速DaskModin数据分析
目录工业级Pandas性能优化:Dask/Modin实战教程1.引言与背景1.1Pandas的局限性1.2分布式计算与GPU加速的需求1.3Dask与Modin简介2.数据集介绍3.工业级数据处理理论基础3.1内存优化3.2计算并行化3.3GPU加速4.实验环境与依赖库5.数据处理与分析流程6.Dask实战:分布式计算与GPU加速7.Modin实战:简洁易用的并行Pandas接口8.数据分析领域的
- 到底什么是工业操作系统?(3)定义
Wnq10072
人工智能分布式嵌入式硬件物联网信号处理
工业操作系统,全称:分布式工业控制操作系统1、运行在单个或多个边缘计算机上的为工业控制服务的操作系统。2、实现对边缘计算机的硬件、内存、CPU、文件系统的管理和调度。3、支持应用程序的安装、运行、管理。4、兼容支持以PC\PLC\DCS\模拟设备\移动终端为代表的各厂家外设,并即插即用和管理。5、任意边缘计算机之间实现去中心化的通信、文件共享、分布式计算、和无延时替换。6、可以将第三方的系统整体视
- 分布式基本理论 - CAP,BASE 和 RAFT 算法
Yellow明
算法分布式
分布式基本理论-CAP,BASE和RAFT算法1.分布式基本理论1.1CAP理论在理论计算机科学中,CAP定理(CAPtheorem),又被称作布鲁尔定理(Brewer’stheorem),它指出对于一个分布式计算系统来说,不可能同时满足以下三点:[1][2]一致性(Consistency)(等同于所有节点访问同一份最新的数据副本)可用性(Availability)(每次请求都能获取到非错的响应—
- 大数据面试系列之——Hadoop
潜心_守道
大数据面经面试大数据Hadoop
Hadoop的三个核心:HDFS(分布式存储系统)MapReduce(分布式计算系统)YARN(分布式资源调度)1.Hadoop集群的几种搭建模式1.单机模式:直接解压安装,不存在分布式存储系统2.伪分布式:NameNode和DataNode安装于同一个节点,无法体现分布式处理的优势。3.完全分布式:一个主节点,多个从节点,存在如果主节点宕机,集群就无法使用的缺点。4.高可用模式:多个主节点,多个
- Spark是什么?可以用来做什么?
Bugkillers
大数据spark大数据分布式
ApacheSpark是一个开源的分布式计算框架,专为处理大规模数据而设计。它最初由加州大学伯克利分校开发,现已成为大数据处理领域的核心工具之一。相比传统的HadoopMapReduce,Spark在速度、易用性和功能多样性上具有显著优势。一、Spark的核心特点速度快:基于内存计算(In-MemoryProcessing),比基于磁盘的MapReduce快10~100倍。支持高效的DAG(有向无
- Java RPC(远程过程调用)技术详解
黄尚圈圈
javarpc开发语言
在当今分布式系统盛行的时代,服务间的通信变得至关重要。JavaRPC(RemoteProcedureCall,远程过程调用)作为一种高效、透明的远程通信手段,在微服务架构、分布式计算等领域扮演着重要角色。本文将深入介绍JavaRPC的基本概念、工作原理、实现方式以及实际应用中的注意事项。一、JavaRPC概述RPC允许一个程序直接调用另一个地址空间(通常是另一台机器上的程序)中的过程或函数,就像调
- 深度学习框架之主流学习框架
uu1224
深度学习学习人工智能机器学习神经网络
深度学习框架是一类专门设计用来简化和加速神经网络模型开发过程的软件工具。它们提供了构建、训练和部署神经网络所需的各种功能和库。以下是一些主流的深度学习框架及其特点:TensorFlow:由Google开发,是一个广泛使用的开源深度学习框架。它以强大的图计算模型和分布式计算能力著称,并且通过高级API如Keras,为用户提供了易于上手的开发体验。PyTorch:由Facebook开发,以其动态计算图
- 入门Apache Spark:基础知识和架构解析
juer_0001
javaspark
介绍ApacheSparkSpark的历史和背景ApacheSpark是一种快速、通用、可扩展的大数据处理引擎,最初由加州大学伯克利分校的AMPLab开发,于2010年首次推出。它最初设计用于支持分布式计算框架MapReduce的交互式查询,但逐渐发展成为一种更通用的数据处理引擎,能够处理数据流、批处理和机器学习等工作负载。Spark的特点和优势Spark是一种快速、通用、可扩展的大数据处理框架,
- 大语言模型原理与工程实践:手把手教你训练 7B 大语言模型 自动化训练框架
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:手把手教你训练7B大语言模型自动化训练框架关键词:大语言模型、7B模型、自动化训练、深度学习、神经网络、自然语言处理、分布式计算文章目录大语言模型原理与工程实践:手把手教你训练7B大语言模型自动化训练框架1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4
- Spark技术系列(一):初识Apache Spark——大数据处理的统一分析引擎
数据大包哥
#Spark大数据
Spark技术系列(一):初识ApacheSpark——大数据处理的统一分析引擎1.背景与核心价值1.1大数据时代的技术演进MapReduce的局限性:磁盘迭代计算、中间结果落盘导致的性能瓶颈Spark诞生背景:UCBerkeleyAMPLab实验室为解决复杂迭代计算需求研发(2010年开源)技术定位:基于内存的通用分布式计算框架(支持批处理、流计算、机器学习、图计算等)1.2Spark内置模块S
- Spark之PySpark
james二次元
大数据SparkPythonPySpark
PySpark是ApacheSpark的PythonAPI,它允许开发者使用Python编程语言进行大规模数据处理和分析。ApacheSpark是一个快速、通用、可扩展的大数据处理引擎,支持批处理、流处理、机器学习、图计算等多种数据处理模式。PySpark使得Python开发者能够利用Spark强大的分布式计算能力,处理大数据集,并执行高效的并行计算。一、PySpark核心概念1.RDD(弹性分布
- Hive SQL 使用及进阶详解
小四的快乐生活
hivesqlhadoop
一、Hive简介Hive是建立在Hadoop之上的数据仓库基础架构,它提供了类似于SQL的查询语言HiveSQL(也称为HQL),用于对存储在Hadoop分布式文件系统(HDFS)中的大规模数据进行数据查询和分析。Hive将SQL查询转换为MapReduce、Tez或Spark等分布式计算任务,使得不熟悉Java编程的数据分析人员也能方便地处理大规模数据。二、HiveSQL基础使用(一)环境准备在
- 云计算该如何实现高效数据存储和处理?
wanhengidc
云计算
云计算可以为企业提供一个强大的平台,帮助企业实现高效的数据存储和处理,云计算有着高度的灵活性和可扩展性,为用户与企业提供高效的资源管理和实时数据处理能力,一下就是云计算该如何实现高效数据存储和处理的几个方面:云计算平台提供的虚拟化技术,可以根据企业的需求来动态调整计算资源的配置,当业务高峰期时,企业可以快速增加服务器中的计算资源,以此来处理更高的用户请求量;在云计算中企业还可以使用分布式计算框架来
- 边缘计算在工程中的应用与实践
ITPUB-微风
边缘计算人工智能
随着物联网和智能制造的快速发展,边缘计算作为一种新兴的计算模式,正逐渐成为工程领域的重要技术。本文将探讨边缘计算的概念、优势、应用场景,以及Kubeedge边缘计算平台在工程实践中的应用。一、边缘计算的概念边缘计算是一种分布式计算架构,它将计算和存储资源部署在网络边缘,靠近数据源。与云计算相对应,边缘计算能够提供更快的响应速度、更低的带宽消耗和更高的系统容错性。二、边缘计算的优势充分利用设备计算资
- 边缘计算的学习
川朴老师
web边缘计算学习人工智能
文章目录概要何为边缘计算?现阶段,企业使用边缘计算相对云计算整体架构流程边缘网络组件边缘计算与云安全研究方向结合引用概要edge何为边缘计算?边缘计算(英语:Edgecomputing),是一种分布式计算的架构,将应用程序、数据资料与服务的计算,由网络中心节点,移往网络逻辑上的边缘节点来处理。边缘计算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。边缘
- 智能边缘计算:开启智能新时代
livefan
人工智能
什么是智能边缘计算?在当今数字化浪潮中,边缘计算已成为一个热门词汇。简单来说,边缘计算是一种分布式计算架构,它将数据处理和存储更靠近数据源的位置,而不是集中于远程数据中心。通过这种方式,边缘计算可以减少数据传输的延迟,提高响应速度,增强数据处理的实时性和效率。而智能边缘计算,是边缘计算架构在涉及数据分析、机器学习或人工智能的工作负载中的应用。一般来说,边缘架构是一种将数据或应用程序放置在网络边缘的
- Python的那些事第三十篇:并行计算库在大数据分析中的应用Dask
暮雨哀尘
Python的那些事python数据分析开发语言运维服务器数据挖掘
Dask:并行计算库在大数据分析中的应用摘要随着数据量的爆炸性增长,传统的数据分析工具(如Pandas和NumPy)在处理大规模数据集时面临内存限制和计算效率低下的问题。Dask作为一种开源的并行计算库,通过动态任务调度和分布式计算,能够高效处理超出内存容量的大数据集,并与Python生态系统中的Pandas、NumPy和scikit-learn等库无缝集成。本文将详细介绍Dask的架构、功能、优
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla