Spark存储机制源码剖析

一、Shuffle结果的写入和读取

通过之前的文章Spark源码解读之Shuffle原理剖析与源码分析我们知道,一个Shuffle操作被DAGScheduler划分为两个stage,第一个stage是ShuffleMapTask,第二个是ResultTask。ShuffleMapTask会产生临时计算结果,这些数据会被ResultTask作为输入而读取。

原文地址:原文链接

那么ShuffleMapTask的计算结果是如何被ResultTask取得的呢?过程如下:

  1. ShuffleMapTask将计算状态(不是具体的计算数值)包装为MapStatus返回给DAGScheduler。
  2. DAGScheduler将MapStatus保存到MapOutputTrackerMaster中。
  3. ResultTask在调用到ShuffleRDD时会利用BlockShuffleFetcher的fetch方法去获取数据。首先是咨询MapOutputTracker所要取的数据的location;然后根据返回的结果调用BlockManager.getMultiple获取真正的数据。

每一个ShuffleMapTask都会用一个MapStatus来保存计算结果。MapStatus是由BlockManagerId和ByeteSize构成,BlockManagerId表示这些计算的中间结果的实际数据在哪个BlockManager,ByteSize表示不同reduceid所要读取的数据的大小。

private[spark] sealed trait MapStatus {
  /** Location where this task was run. */
  def location: BlockManagerId

  /**
   * Estimated size for the reduce block, in bytes.
   *
   * If a block is non-empty, then this method MUST return a non-zero size.  This invariant is
   * necessary for correctness, since block fetchers are allowed to skip zero-size blocks.
   */
  //不同reduceID所要读取的数据的大小
  def getSizeForBlock(reduceId: Int): Long
}

1. Shuffle结果的写入

Shuffle的写入过程如下:

ShuffleMapTask.runTask ----> HashShuffleWriter.writer ----> BlockObjectWriter.writer

ShuffleMapTask中runTask方法源码如下:

 override def runTask(context: TaskContext): MapStatus = {
    //使用广播变量反序列化RDD
    // Deserialize the RDD using the broadcast variable.
    val ser = SparkEnv.get.closureSerializer.newInstance()
    val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)

    metrics = Some(context.taskMetrics)
    var writer: ShuffleWriter[Any, Any] = null
    try {
      //获取ShuffleManager,从ShuffleManager中获取ShuffleWriter
      val manager = SparkEnv.get.shuffleManager
      writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
      //首先调用rdd的iterator方法,并且传入了当前task要处理那个partition,然后执行我们定义的函数
      //处理返回的数据都是通过ShuffleWriter,经过HashPartitioner进行分区之后,写入了自己对应的bucket
      writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
      //最后返回结果,MapStatus
      //MapStatus里面封装了ShffleMapTask计算后的数据,存储在哪里,其实就是BlockManager的信息
      //BlockManager是spark底层内存,数据,磁盘数据管理的组件
      return writer.stop(success = true).get
    } catch {
      case e: Exception =>
        try {
          if (writer != null) {
            writer.stop(success = false)
          }
        } catch {
          case e: Exception =>
            log.debug("Could not stop writer", e)
        }
        throw e
    }
  }

在HashShuffleWriter.writer中主要处理两件事:

  1. 判断是否需要进行聚合操作,比如有,都需要写入的话,那么需要写成,然后再进行后续操作。
  2. 利用Partition函数来决定写入哪个文件中。

HashShuffleWriter中的writer方法源码如下:

 /** Write a bunch of records to this task's output */
  /**
    * 将每个ShuffleMapTask计算出来的新的RDD的partition数据,写入本地磁盘
    * @param records
    */
  override def write(records: Iterator[_ <: Product2[K, V]]): Unit = {
    //判断是否需要进行本地,如果是reduceByKey这种操作,则要进行聚合操作
    //即dep.aggregator.isDefined为true
    //dep.mapSideCombine也为true
    val iter = if (dep.aggregator.isDefined) {
      if (dep.mapSideCombine) {
        //这里进行本地聚合操作,比如本地有(hello,1),(hello,1)
        //则可以聚合成(hello,2)
        dep.aggregator.get.combineValuesByKey(records, context)
      } else {
        records
      }
    } else {
      require(!dep.mapSideCombine, "Map-side combine without Aggregator specified!")
      records
    }

    //如果需要本地聚合,则先进行聚合
    //然后遍历数据,对每一个数据,进行partition操作,默认的是HashPartitioner,并且生成bucketId
    //也就表示这数据要写入哪一个bucket
    for (elem <- iter) {
      //计算bucketId
      val bucketId = dep.partitioner.getPartition(elem._1)
      //调用shuffleBlockManager.forMapTask()方法生成bucketId对应的writer,然后用writer将数据写入bucket
      //DiskBlockObjectWriter负责将数据真正写入磁盘
      shuffle.writers(bucketId).write(elem)
    }
  }

在上面writer方法中,使用到的Shuffle由ShuffleBlockManager中的forMapTask函数生成,该方法源码如下:

/**
   * Get a ShuffleWriterGroup for the given map task, which will register it as complete
   * when the writers are closed successfully
   */
  /**
    * 给每一个map task生成 一个ShuffleWriterGroup
    */
  def forMapTask(shuffleId: Int, mapId: Int, numBuckets: Int, serializer: Serializer,
      writeMetrics: ShuffleWriteMetrics) = {
    new ShuffleWriterGroup {
      shuffleStates.putIfAbsent(shuffleId, new ShuffleState(numBuckets))
      private val shuffleState = shuffleStates(shuffleId)
      private var fileGroup: ShuffleFileGroup = null

      val openStartTime = System.nanoTime
      //判断是否开启了consolidate优化,如果开启了,就不会为每一个bucket获取一个输出文件
      //而是为每一个bucket获取一个ShuffleGroup的write
      val writers: Array[BlockObjectWriter] = if (consolidateShuffleFiles) {
        fileGroup = getUnusedFileGroup()
        Array.tabulate[BlockObjectWriter](numBuckets) { bucketId =>
          //首先生成一个唯一的blockId,然后用bucketId来调用ShuffleFileGroup的apply函数来获取一个writer
          val blockId = ShuffleBlockId(shuffleId, mapId, bucketId)
          //使用blockManager.getDiskWriter()函数来获取一个writer
          //实际上在开启优化配置后,对一个bucketId,不再是像之前一样获取一个独立的ShuffleBlockFile的writer
          //而是获取ShuffleFileGroup中的一个writer
          //这样就实现了多个ShufffleMapTask的输出文件的合并
          blockManager.getDiskWriter(blockId, fileGroup(bucketId), serializer, bufferSize,
            writeMetrics)
        }
      } else {
        //如果没有进行shuffle优化配置,也会针对每一个shuffleMapTask创建一个ShuffleBlockFile
        Array.tabulate[BlockObjectWriter](numBuckets) { bucketId =>
          val blockId = ShuffleBlockId(shuffleId, mapId, bucketId)
          val blockFile = blockManager.diskBlockManager.getFile(blockId)
          // Because of previous failures, the shuffle file may already exist on this machine.
          // If so, remove it.
          //如果ShuffleBlockFile存在,则进行删除
          if (blockFile.exists) {
            if (blockFile.delete()) {
              logInfo(s"Removed existing shuffle file $blockFile")
            } else {
              logWarning(s"Failed to remove existing shuffle file $blockFile")
            }
          }
          //写入磁盘中
          blockManager.getDiskWriter(blockId, blockFile, serializer, bufferSize, writeMetrics)
        }
      }
      // Creating the file to write to and creating a disk writer both involve interacting with
      // the disk, so should be included in the shuffle write time.
      writeMetrics.incShuffleWriteTime(System.nanoTime - openStartTime)

      override def releaseWriters(success: Boolean) {
        if (consolidateShuffleFiles) {
          if (success) {
            val offsets = writers.map(_.fileSegment().offset)
            val lengths = writers.map(_.fileSegment().length)
            fileGroup.recordMapOutput(mapId, offsets, lengths)
          }
          recycleFileGroup(fileGroup)
        } else {
          shuffleState.completedMapTasks.add(mapId)
        }
      }

      private def getUnusedFileGroup(): ShuffleFileGroup = {
        val fileGroup = shuffleState.unusedFileGroups.poll()
        if (fileGroup != null) fileGroup else newFileGroup()
      }

      private def newFileGroup(): ShuffleFileGroup = {
        val fileId = shuffleState.nextFileId.getAndIncrement()
        val files = Array.tabulate[File](numBuckets) { bucketId =>
          val filename = physicalFileName(shuffleId, bucketId, fileId)
          blockManager.diskBlockManager.getFile(filename)
        }
        val fileGroup = new ShuffleFileGroup(shuffleId, fileId, files)
        shuffleState.allFileGroups.add(fileGroup)
        fileGroup
      }

      private def recycleFileGroup(group: ShuffleFileGroup) {
        shuffleState.unusedFileGroups.add(group)
      }
    }
  }

在上面的源码中涉及到Shuffle的优化原理,细节可以查看上篇文章Spark源码解读之Shuffle原理剖析与源码分析
在gieFile方法中负责将Shuffle需要写入的数据映射为一个文件。

/** Looks up a file by hashing it into one of our local subdirectories. */
  // This method should be kept in sync with
  // org.apache.spark.network.shuffle.StandaloneShuffleBlockManager#getFile().
  //负责将三元组(shuffle_id,map_id,reduce_id)映射到文件名
  def getFile(filename: String): File = {
    // Figure out which local directory it hashes to, and which subdirectory in that
    val hash = Utils.nonNegativeHash(filename)
    val dirId = hash % localDirs.length
    val subDirId = (hash / localDirs.length) % subDirsPerLocalDir

    // Create the subdirectory if it doesn't already exist
    var subDir = subDirs(dirId)(subDirId)
    if (subDir == null) {
      subDir = subDirs(dirId).synchronized {
        val old = subDirs(dirId)(subDirId)
        if (old != null) {
          old
        } else {
          val newDir = new File(localDirs(dirId), "%02x".format(subDirId))
          if (!newDir.exists() && !newDir.mkdir()) {
            throw new IOException(s"Failed to create local dir in $newDir.")
          }
          subDirs(dirId)(subDirId) = newDir
          newDir
        }
      }
    }

    new File(subDir, filename)
  }

最后使用DiskBlockObjectWriter.writer负责将数据真正写入磁盘中。

 override def write(value: Any) {
    if (!initialized) {
      open()
    }

    objOut.writeObject(value)
    numRecordsWritten += 1
    writeMetrics.incShuffleRecordsWritten(1)

    if (numRecordsWritten % 32 == 0) {
      updateBytesWritten()
    }
  }

2. Shuffle结果读取

Shuffle结果的读取过程如下所示:

ShuffleRDD.compute ---> HashShuffleRead.read ---> BlockStoreShuffleFetcher.fetch ---> BlockManager.getMultiple

ShuffleRDD的compute函数是读取ShuffleMapTask计算结果的出发点。compute源码如下:

 /**
    *shuffle的入口
    */
  override def compute(split: Partition, context: TaskContext): Iterator[(K, C)] = {
    //这里会调用shuffleManager.getReader()来获取一个HashShuffleReader
    //然后调用它的reader方法来拉取resultTask需要聚合的数据
    val dep = dependencies.head.asInstanceOf[ShuffleDependency[K, V, C]]
    SparkEnv.get.shuffleManager.getReader(dep.shuffleHandle, split.index, split.index + 1, context)
      .read()
      .asInstanceOf[Iterator[(K, C)]]
  }

在这里使用HashShuffleReader调用reader方法获取合并后的数据,源码如下所示:

/** Read the combined key-values for this reduce task */
  override def read(): Iterator[Product2[K, C]] = {
    val ser = Serializer.getSerializer(dep.serializer)
    //通过BlockStoreShuffleFetcher的fetch方法来从DAGScheduler的MapOutputTrackerMaster中获取
    //自己需要的数据的信息,然后底层再通过对应的BlockManager拉取需要的数据
    val iter = BlockStoreShuffleFetcher.fetch(handle.shuffleId, startPartition, context, ser)

    val aggregatedIter: Iterator[Product2[K, C]] = if (dep.aggregator.isDefined) {
      if (dep.mapSideCombine) {
        new InterruptibleIterator(context, dep.aggregator.get.combineCombinersByKey(iter, context))
      } else {
        new InterruptibleIterator(context, dep.aggregator.get.combineValuesByKey(iter, context))
      }
    } else {
      require(!dep.mapSideCombine, "Map-side combine without Aggregator specified!")

      // Convert the Product2s to pairs since this is what downstream RDDs currently expect
      iter.asInstanceOf[Iterator[Product2[K, C]]].map(pair => (pair._1, pair._2))
    }

    // Sort the output if there is a sort ordering defined.
    dep.keyOrdering match {
      case Some(keyOrd: Ordering[K]) =>
        // Create an ExternalSorter to sort the data. Note that if spark.shuffle.spill is disabled,
        // the ExternalSorter won't spill to disk.
        val sorter = new ExternalSorter[K, C, C](ordering = Some(keyOrd), serializer = Some(ser))
        sorter.insertAll(aggregatedIter)
        context.taskMetrics.incMemoryBytesSpilled(sorter.memoryBytesSpilled)
        context.taskMetrics.incDiskBytesSpilled(sorter.diskBytesSpilled)
        sorter.iterator
      case None =>
        aggregatedIter
    }
  }

在reader函数中调用BlockStoreShuffleFetcher的fetch方法去获取MapStatus,最后通过BlockManager去真正获取数据。源码如下:

private[hash] object BlockStoreShuffleFetcher extends Logging {
  def fetch[T](
      shuffleId: Int,
      reduceId: Int,
      context: TaskContext,
      serializer: Serializer)
    : Iterator[T] =
  {
    logDebug("Fetching outputs for shuffle %d, reduce %d".format(shuffleId, reduceId))
    val blockManager = SparkEnv.get.blockManager

    val startTime = System.currentTimeMillis

    //获取一个全局的MapOutputTracker,并且调用其getServerStatuses方法
    //注意这里传入了两个参数,shuffleId和reduceId
    //shuffle有两个stage参与,因此shuffleId代表表示上一个stage,使用这个参数来获取
    //上一个stage的ShuffleMapTask shuffle write输出的MapStatus数据信息
    //在获取到MapStatus之后,还要使用reduceId来拉取当前stage需要获取的之前stage的ShuffleMapTask的输出文件信息
    //这个getServerStatuses方法是需要走网络通信的,因为它要连接Driver上的DAGScheduler来获取MapOutputTracker上的数据信息
    val statuses = SparkEnv.get.mapOutputTracker.getServerStatuses(shuffleId, reduceId)

    logDebug("Fetching map output location for shuffle %d, reduce %d took %d ms".format(
      shuffleId, reduceId, System.currentTimeMillis - startTime))

    val splitsByAddress = new HashMap[BlockManagerId, ArrayBuffer[(Int, Long)]]
    for (((address, size), index) <- statuses.zipWithIndex) {
      splitsByAddress.getOrElseUpdate(address, ArrayBuffer()) += ((index, size))
    }

    val blocksByAddress: Seq[(BlockManagerId, Seq[(BlockId, Long)])] = splitsByAddress.toSeq.map {
      case (address, splits) =>
        (address, splits.map(s => (ShuffleBlockId(shuffleId, s._1, reduceId), s._2)))
    }

    def unpackBlock(blockPair: (BlockId, Try[Iterator[Any]])) : Iterator[T] = {
      val blockId = blockPair._1
      val blockOption = blockPair._2
      blockOption match {
        case Success(block) => {
          block.asInstanceOf[Iterator[T]]
        }
        case Failure(e) => {
          blockId match {
            case ShuffleBlockId(shufId, mapId, _) =>
              val address = statuses(mapId.toInt)._1
              throw new FetchFailedException(address, shufId.toInt, mapId.toInt, reduceId, e)
            case _ =>
              throw new SparkException(
                "Failed to get block " + blockId + ", which is not a shuffle block", e)
          }
        }
      }
    }

    val blockFetcherItr = new ShuffleBlockFetcherIterator(
      context,
      SparkEnv.get.blockManager.shuffleClient,
      blockManager,
      blocksByAddress,
      serializer,
      SparkEnv.get.conf.getLong("spark.reducer.maxMbInFlight", 48) * 1024 * 1024)
    val itr = blockFetcherItr.flatMap(unpackBlock)

    val completionIter = CompletionIterator[T, Iterator[T]](itr, {
      context.taskMetrics.updateShuffleReadMetrics()
    })

    new InterruptibleIterator[T](context, completionIter) {
      val readMetrics = context.taskMetrics.createShuffleReadMetricsForDependency()
      override def next(): T = {
        readMetrics.incRecordsRead(1)
        delegate.next()
      }
    }
  }
}

在MapOutputTracker中调用getServerStatuses在Executor中获取ShuffleMapTask输出结果数据的所在的URL和Size,源码如下:

 /**
   * Called from executors to get the server URIs and output sizes of the map outputs of
   * a given shuffle.
   */
  def getServerStatuses(shuffleId: Int, reduceId: Int): Array[(BlockManagerId, Long)] = {
    val statuses = mapStatuses.get(shuffleId).orNull
    if (statuses == null) {
      logInfo("Don't have map outputs for shuffle " + shuffleId + ", fetching them")
      var fetchedStatuses: Array[MapStatus] = null
      fetching.synchronized {
        // Someone else is fetching it; wait for them to be done
        //等待抓取数据
        while (fetching.contains(shuffleId)) {
          try {
            fetching.wait()
          } catch {
            case e: InterruptedException =>
          }
        }

        // Either while we waited the fetch happened successfully, or
        // someone fetched it in between the get and the fetching.synchronized.
        fetchedStatuses = mapStatuses.get(shuffleId).orNull
        if (fetchedStatuses == null) {
          // We have to do the fetch, get others to wait for us.
          fetching += shuffleId
        }
      }

      if (fetchedStatuses == null) {
        // We won the race to fetch the output locs; do so
        logInfo("Doing the fetch; tracker actor = " + trackerActor)
        // This try-finally prevents hangs due to timeouts:
        try {
          val fetchedBytes =
            askTracker(GetMapOutputStatuses(shuffleId)).asInstanceOf[Array[Byte]]
          fetchedStatuses = MapOutputTracker.deserializeMapStatuses(fetchedBytes)
          logInfo("Got the output locations")
          mapStatuses.put(shuffleId, fetchedStatuses)
        } finally {
          fetching.synchronized {
            fetching -= shuffleId
            fetching.notifyAll()
          }
        }
      }
      if (fetchedStatuses != null) {
        fetchedStatuses.synchronized {
          return MapOutputTracker.convertMapStatuses(shuffleId, reduceId, fetchedStatuses)
        }
      } else {
        logError("Missing all output locations for shuffle " + shuffleId)
        throw new MetadataFetchFailedException(
          shuffleId, reduceId, "Missing all output locations for shuffle " + shuffleId)
      }
    } else {
      statuses.synchronized {
        return MapOutputTracker.convertMapStatuses(shuffleId, reduceId, statuses)
      }
    }
  }

一个ShuffleMapTask会生成一个MapStatus,在MapStatus中含有当前ShuffleMapTask产生的数据落到各个Partition中的大小。如果大小为0,则表示该分区中没有数据产生。每一个分区中的数据大小使用一个byte来表示的,但是一个byte最多只能表示255,如何表示更大的size呢?这里就使用到了巧妙的转换,使用1.1作为对数底,可以将28,转换为1.1256。MapStatus中的compressSize和decompressSize的作用,就是将数据的大小用另一种进制来表示,这样就可以让表达的空间从0至255转换为0至35903328256,单个存储的大小可以高达近35GB。

源码如下:

/**
   * Compress a size in bytes to 8 bits for efficient reporting of map output sizes.
   * We do this by encoding the log base 1.1 of the size as an integer, which can support
   * sizes up to 35 GB with at most 10% error.
   */
  def compressSize(size: Long): Byte = {
    if (size == 0) {
      0
    } else if (size <= 1L) {
      1
    } else {
      math.min(255, math.ceil(math.log(size) / math.log(LOG_BASE)).toInt).toByte
    }
  }

  /**
   * Decompress an 8-bit encoded block size, using the reverse operation of compressSize.
   */
  def decompressSize(compressedSize: Byte): Long = {
    if (compressedSize == 0) {
      0
    } else {
      math.pow(LOG_BASE, compressedSize & 0xFF).toLong
    }
  }

ShuffleId唯一标识了一个job中的stage,这一个stage是作为ReduceTask所在Stage的直接上游。需要遍历该Stage中每一个Task产生的mapStatus来获知是否有当前ResultTask需要读取的数据。

在BlockManager中首先会调用initialize函数进行初始化,初始化BlockTransferService 和 ShuffleClient,向BlockManagerMaster进行注册,并且在BlockManagerWorker中注册本地的Shuffle service。如果所要获取的文件落在本地,则调用getLocal获取,否则调用getRemote远程拉取。initialize函数源码如下:

/**
   * Initializes the BlockManager with the given appId. This is not performed in the constructor as
   * the appId may not be known at BlockManager instantiation time (in particular for the driver,
   * where it is only learned after registration with the TaskScheduler).
   *
   * This method initializes the BlockTransferService and ShuffleClient, registers with the
   * BlockManagerMaster, starts the BlockManagerWorker actor, and registers with a local shuffle
   * service if configured.
   */
  def initialize(appId: String): Unit = {
    blockTransferService.init(this)
    shuffleClient.init(appId)

    blockManagerId = BlockManagerId(
      executorId, blockTransferService.hostName, blockTransferService.port)

    shuffleServerId = if (externalShuffleServiceEnabled) {
      BlockManagerId(executorId, blockTransferService.hostName, externalShuffleServicePort)
    } else {
      blockManagerId
    }

    master.registerBlockManager(blockManagerId, maxMemory, slaveActor)

    // Register Executors' configuration with the local shuffle service, if one should exist.
    if (externalShuffleServiceEnabled && !blockManagerId.isDriver) {
      registerWithExternalShuffleServer()
    }
  }

Shuffle操作会消耗大量的内存,具体体现在下面几个方面:

  • 每个Writer开启100KB的缓存。
  • Records会占用大量内存。
  • 在ResultTask的combine阶段,利用HashMap来缓存数据,如果读取的数据量很大,或者分区很多,可能导致内存不足。

二、Memory Store

在上面我们剖析了Shuffle的存储过程,对于Spark,它首先会将RDD缓存在内存中,其次磁盘等,那么它的存取过程是怎样的呢?下面我们来看看Spark的存储系统的框架图:
Spark存储机制源码剖析_第1张图片
以上框架图主要包含以下几个模块:

  • CacheManager:RDD进行计算的时候,通过CacheManager来获取数据,并通过CacheManager来存储计算结果。
  • BlockManager:CacheManager在进行数据的读取和存储的时候主要依赖BlockManager接口来操作,BlockManager决定数据是从内存还是从磁盘中获取。
  • MemoryStore:负责将数据存储在内存中或从内存中读取。
  • DiskStore:负责将 数据写入磁盘或者从磁盘读入。
  • BlockManagerWorker:数据写入本地的MemoryStore或者DiskStore是一个同步操作,为了容错还可能将数据复制到别的计算节点,以便数据丢失的时候还能够恢复,数据复制的操作是异步操作,由BlockManagerWorker来完成。
  • ConnectionManager:负责与其他计算节点建立连接,并且负责数据的发送和接收。
  • BlockManagerMaster:该模块只在Driver所运行的Executor中运行,主要功能是记录所有BlockId存储在哪个SlaveWroker上。如果一个RDD Task运行所需要的Block不在本地机器上,这时候Worker需要询问Master该Block的位置,然后通过ConnectionManager去连接获取。

1.启动过程

在SparkEnv中初始化过程源码如下:

//创建各个子模块
    val blockManagerMaster = new BlockManagerMaster(registerOrLookup(
      "BlockManagerMaster",
      new BlockManagerMasterActor(isLocal, conf, listenerBus)), conf, isDriver)

    // NB: blockManager is not valid until initialize() is called later.
    val blockManager = new BlockManager(executorId, actorSystem, blockManagerMaster,
      serializer, conf, mapOutputTracker, shuffleManager, blockTransferService, securityManager,
      numUsableCores)

    val broadcastManager = new BroadcastManager(isDriver, conf, securityManager)

    val cacheManager = new CacheManager(blockManager)

在registerOrLookup函数中,如果当前节点是Driver则创建这个Actor,否则建立到Driver的连接,取得BlockManagerMaster的Actor。

 def registerOrLookup(name: String, newActor: => Actor): ActorRef = {
      //如果当前节点是Driver则创建 Actor
      if (isDriver) {
        logInfo("Registering " + name)
        actorSystem.actorOf(Props(newActor), name = name)
        //否则建立到Driver连接,取得BlockManagerMaster
      } else {
        AkkaUtils.makeDriverRef(name, conf, actorSystem)
      }
    }

2. 数据的写入过程

数据写入过程简述如下:

  1. RDD.iterator是与Storage子系统交互的入口。
  2. CacheManager.getOrCompute中调用BlockManager的doPut方法来写入数据。
  3. 数据优先写入内存中,如果内存已经满了,则将数据刷新到磁盘中。
  4. 通过BlockManagerMaster中有新的数据写入,在BlockManagerMaster中保存元数据。
  5. 如果数据备份数目大于1,则将写入的数据同步到其他Worker中。

RDD.iterator方法源码如下:

 /**
   * Internal method to this RDD; will read from cache if applicable, or otherwise compute it.
   * This should ''not'' be called by users directly, but is available for implementors of custom
   * subclasses of RDD.
   */
  //与子Storage子系统交互的入口
  final def iterator(split: Partition, context: TaskContext): Iterator[T] = {
    if (storageLevel != StorageLevel.NONE) {
      SparkEnv.get.cacheManager.getOrCompute(this, split, context, storageLevel)
    } else {
      computeOrReadCheckpoint(split, context)
    }
  }

CacheManager.getOrCompute源码如下:

 def getOrCompute[T](
      rdd: RDD[T],
      partition: Partition,
      context: TaskContext,
      storageLevel: StorageLevel): Iterator[T] = {

    val key = RDDBlockId(rdd.id, partition.index)
    logDebug(s"Looking for partition $key")
    blockManager.get(key) match {
      case Some(blockResult) =>
        // Partition is already materialized, so just return its values
        val inputMetrics = blockResult.inputMetrics
        val existingMetrics = context.taskMetrics
          .getInputMetricsForReadMethod(inputMetrics.readMethod)
        existingMetrics.incBytesRead(inputMetrics.bytesRead)

        val iter = blockResult.data.asInstanceOf[Iterator[T]]
        new InterruptibleIterator[T](context, iter) {
          override def next(): T = {
            existingMetrics.incRecordsRead(1)
            delegate.next()
          }
        }
      case None =>
        // Acquire a lock for loading this partition
        // If another thread already holds the lock, wait for it to finish return its results
        val storedValues = acquireLockForPartition[T](key)
        if (storedValues.isDefined) {
          return new InterruptibleIterator[T](context, storedValues.get)
        }

        // Otherwise, we have to load the partition ourselves
        try {
          logInfo(s"Partition $key not found, computing it")
          //判断是否进行了checkPoint操作,如果没有则进行计算
          val computedValues = rdd.computeOrReadCheckpoint(partition, context)

          // If the task is running locally, do not persist the result
          if (context.isRunningLocally) {
            return computedValues
          }

          // Otherwise, cache the values and keep track of any updates in block statuses
          val updatedBlocks = new ArrayBuffer[(BlockId, BlockStatus)]
          //缓存计算结果,默认MEMORY_AND_DISK级别
          val cachedValues = putInBlockManager(key, computedValues, storageLevel, updatedBlocks)
          val metrics = context.taskMetrics
          val lastUpdatedBlocks = metrics.updatedBlocks.getOrElse(Seq[(BlockId, BlockStatus)]())
          metrics.updatedBlocks = Some(lastUpdatedBlocks ++ updatedBlocks.toSeq)
          new InterruptibleIterator(context, cachedValues)

        } finally {
          loading.synchronized {
            loading.remove(key)
            loading.notifyAll()
          }
        }
    }
  }

putInBlockManager方法源码如下:

 /**
   * Cache the values of a partition, keeping track of any updates in the storage statuses of
   * other blocks along the way.
   *
   * The effective storage level refers to the level that actually specifies BlockManager put
   * behavior, not the level originally specified by the user. This is mainly for forcing a
   * MEMORY_AND_DISK partition to disk if there is not enough room to unroll the partition,
   * while preserving the the original semantics of the RDD as specified by the application.
   */
  private def putInBlockManager[T](
      key: BlockId,
      values: Iterator[T],
      level: StorageLevel,
      updatedBlocks: ArrayBuffer[(BlockId, BlockStatus)],
      effectiveStorageLevel: Option[StorageLevel] = None): Iterator[T] = {

    val putLevel = effectiveStorageLevel.getOrElse(level)
    //如果没有缓存到内存中,则进行计算,并且作为BlockManager的一个iterator,而不是展现在内存中
    if (!putLevel.useMemory) {
      /*
       * This RDD is not to be cached in memory, so we can just pass the computed values as an
       * iterator directly to the BlockManager rather than first fully unrolling it in memory.
       */
      updatedBlocks ++=
        blockManager.putIterator(key, values, level, tellMaster = true, effectiveStorageLevel)
      blockManager.get(key) match {
        case Some(v) => v.data.asInstanceOf[Iterator[T]]
        case None =>
          logInfo(s"Failure to store $key")
          throw new BlockException(key, s"Block manager failed to return cached value for $key!")
      }
    } else {
      /*
       * This RDD is to be cached in memory. In this case we cannot pass the computed values
       * to the BlockManager as an iterator and expect to read it back later. This is because
       * we may end up dropping a partition from memory store before getting it back.
       *
       * In addition, we must be careful to not unroll the entire partition in memory at once.
       * Otherwise, we may cause an OOM exception if the JVM does not have enough space for this
       * single partition. Instead, we unroll the values cautiously, potentially aborting and
       * dropping the partition to disk if applicable.
       */
      //如果RDD缓存到内存中了,这时不需要进行计算,需要读取缓存的RDD之后返回,否则可能因为在读取返回之前将其删除导致RDD
      //丢失。另外,不能将整个partition展现在内存中,否则可能会出现OOM,可进行适当刷新数据到磁盘上
      blockManager.memoryStore.unrollSafely(key, values, updatedBlocks) match {
        case Left(arr) =>
          // We have successfully unrolled the entire partition, so cache it in memory
          updatedBlocks ++=
            blockManager.putArray(key, arr, level, tellMaster = true, effectiveStorageLevel)
          arr.iterator.asInstanceOf[Iterator[T]]
        case Right(it) =>
          // There is not enough space to cache this partition in memory
          //没有足够的内存写入磁盘
          val returnValues = it.asInstanceOf[Iterator[T]]
          if (putLevel.useDisk) {
            logWarning(s"Persisting partition $key to disk instead.")
            val diskOnlyLevel = StorageLevel(useDisk = true, useMemory = false,
              useOffHeap = false, deserialized = false, putLevel.replication)
            putInBlockManager[T](key, returnValues, level, updatedBlocks, Some(diskOnlyLevel))
          } else {
            returnValues
          }
      }
    }
  }

这时进入BlockManager中在putArray中调用doPut方法:

 /**
   * Put a new block of values to the block manager.
   * Return a list of blocks updated as a result of this put.
   */
  def putArray(
      blockId: BlockId,
      values: Array[Any],
      level: StorageLevel,
      tellMaster: Boolean = true,
      effectiveStorageLevel: Option[StorageLevel] = None): Seq[(BlockId, BlockStatus)] = {
    require(values != null, "Values is null")
    //调用doPut方法
    doPut(blockId, ArrayValues(values), level, tellMaster, effectiveStorageLevel)
  }

在doPut方法中,如果replicate大于1,则调用replicate方法进行备份,然后缓存数据到内存,tachyon或者磁盘中,最后向Master报告每一个Block的信息。

 // If we're storing bytes, then initiate the replication before storing them locally.
    // This is faster as data is already serialized and ready to send.
    val replicationFuture = data match {
        //如果备份数目大于1,调用replicate函数将数据备份到其他节点
      case b: ByteBufferValues if putLevel.replication > 1 =>
        // Duplicate doesn't copy the bytes, but just creates a wrapper
        val bufferView = b.buffer.duplicate()
        Future { replicate(blockId, bufferView, putLevel) }
      case _ => null
    }
 // Keep track of which blocks are dropped from memory
        if (putLevel.useMemory) {
          result.droppedBlocks.foreach { updatedBlocks += _ }
        }

        val putBlockStatus = getCurrentBlockStatus(blockId, putBlockInfo)
        if (putBlockStatus.storageLevel != StorageLevel.NONE) {
          // Now that the block is in either the memory, tachyon, or disk store,
          // let other threads read it, and tell the master about it.
          marked = true
          putBlockInfo.markReady(size)
          if (tellMaster) {
            //将数据缓存到内存,tachyon或者磁盘上之后向master报告并且 写入每一个block的信息
            reportBlockStatus(blockId, putBlockInfo, putBlockStatus)
          }
          updatedBlocks += ((blockId, putBlockStatus))
        }

reportBlockStatus方法源码如下:

/**
   * Tell the master about the current storage status of a block. This will send a block update
   * message reflecting the current status, *not* the desired storage level in its block info.
   * For example, a block with MEMORY_AND_DISK set might have fallen out to be only on disk.
   *
   * droppedMemorySize exists to account for when the block is dropped from memory to disk (so
   * it is still valid). This ensures that update in master will compensate for the increase in
   * memory on slave.
   */
  private def reportBlockStatus(
      blockId: BlockId,
      info: BlockInfo,
      status: BlockStatus,
      droppedMemorySize: Long = 0L): Unit = {
    val needReregister = !tryToReportBlockStatus(blockId, info, status, droppedMemorySize)
    if (needReregister) {
      logInfo(s"Got told to re-register updating block $blockId")
      // Re-registering will report our new block for free.
      asyncReregister()
    }
    logDebug(s"Told master about block $blockId")
  }

3. 数据读取过程

数据读取的入口是get函数,首先尝试从本地获取数据,如果数据不在本地则从远程获取:

 /**
   * Get a block from the block manager (either local or remote).
   */
  def get(blockId: BlockId): Option[BlockResult] = {
    //首先尝试从本地获取,如果数据在本地返回,否则从远程拉取数据
    val local = getLocal(blockId)
    if (local.isDefined) {
      logInfo(s"Found block $blockId locally")
      return local
    }
    val remote = getRemote(blockId)
    if (remote.isDefined) {
      logInfo(s"Found block $blockId remotely")
      return remote
    }
    None
  }

获取本地数据时,首先尝试从内存中获取,接着到堆外内存中尝试或者,最后尝试去磁盘中读取数据。
远程获取数据调用路径为getRemote ---> doGetRemote ---> BlockTransferService.fetchBlockSync
fetchBlockSync方法的源码如下,通过BlockFetchingListener监视器来得知获取数据是否成功:

/**
   * A special case of [[fetchBlocks]], as it fetches only one block and is blocking.
   *
   * It is also only available after [[init]] is invoked.
   */
  def fetchBlockSync(host: String, port: Int, execId: String, blockId: String): ManagedBuffer = {
    // A monitor for the thread to wait on.
    val result = Promise[ManagedBuffer]()
    fetchBlocks(host, port, execId, Array(blockId),
      new BlockFetchingListener {
        //获取数据失败
        override def onBlockFetchFailure(blockId: String, exception: Throwable): Unit = {
          result.failure(exception)
        }
        //获取数据成功
        override def onBlockFetchSuccess(blockId: String, data: ManagedBuffer): Unit = {
          val ret = ByteBuffer.allocate(data.size.toInt)
          ret.put(data.nioByteBuffer())
          ret.flip()
          result.success(new NioManagedBuffer(ret))
        }
      })

    Await.result(result.future, Duration.Inf)
  }

至此,关于Spark的存储机制的源码剖析结束,如有任何问题,欢迎留言讨论。

你可能感兴趣的:(Spark,Spark源码剖析与调优)