spark集群:无法指定被请求的地址,Service 'Driver' could not bind on a random free port.

19/07/09 17:00:48 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users  with view permissions: Set(root); groups with view permissions: Set(); users  with modify permissions: Set(root); groups with modify permissions: Set()
19/07/09 17:00:49 WARN Utils: Service 'Driver' could not bind on a random free port. You may check whether configuring an appropriate binding address.

Exception in thread "main" java.net.BindException: 无法指定被请求的地址: Service 'Driver' failed after 16 retries (on a random free port)! Consider explicitly setting the appropriate binding address for the service 'Driver' (for example spark.driver.bindAddress for SparkDriver) to the correct binding address.
	at sun.nio.ch.Net.bind0(Native Method)
	at sun.nio.ch.Net.bind(Net.java:433)
	at sun.nio.ch.Net.bind(Net.java:425)
	at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:223)
	at io.netty.channel.socket.nio.NioServerSocketChannel.doBind(NioServerSocketChannel.java:128)
	at io.netty.channel.AbstractChannel$AbstractUnsafe.bind(AbstractChannel.java:558)
	at io.netty.channel.DefaultChannelPipeline$HeadContext.bind(DefaultChannelPipeline.java:1283)
	at io.netty.channel.AbstractChannelHandlerContext.invokeBind(AbstractChannelHandlerContext.java:501)
	at io.netty.channel.AbstractChannelHandlerContext.bind(AbstractChannelHandlerContext.java:486)
	at io.netty.channel.DefaultChannelPipeline.bind(DefaultChannelPipeline.java:989)
	at io.netty.channel.AbstractChannel.bind(AbstractChannel.java:254)
	at io.netty.bootstrap.AbstractBootstrap$2.run(AbstractBootstrap.java:364)
	at io.netty.util.concurrent.AbstractEventExecutor.safeExecute(AbstractEventExecutor.java:163)
	at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:403)
	at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:463)
	at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:858)
	at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:138)
	at java.lang.Thread.run(Thread.java:748)

 

我的spark执行的jar文件代码内容如下

 

  SparkSession.Builder builder = SparkSession.builder()/*.master("local[*]")*/.appName("SparkCalculateRecommend").
                config("spark.mongodb.input.uri", "mongodb://xx:[email protected]:27018/sns.igomoMemberInfo_Spark_input")
                .config("spark.mongodb.output.uri", "mongodb://xx:[email protected]:27018/sns.igomoMemberInfo_Spark_output")
                .config("spark.driver.bindAddress","127.0.0.1")
                .config("spark.executor.memory", "1g")
                .config("es.nodes", esIpAddr)
                .config("es.port", "9200")
                .config("es.nodes.wan.only", "true");

我的spark通过java提交到集群的代码如下

                SparkLauncher spark = new SparkLauncher()
                        .setDeployMode("cluster")
                        .setMainClass("com.fsdn.zaodian.spark.XunMeiSpark")
                        .setMaster("spark://192.168.31.205:8180")
                        .setConf(SparkLauncher.EXECUTOR_MEMORY, "512m")
                        .setConf(SparkLauncher.EXECUTOR_CORES,"2")
                        .setSparkHome("/data/spark-2.4.3")
//                        .setSparkHome("D:\\soft\\spark-2.4.3-bin-hadoop2.7")
                        .setVerbose(true)
                        .setAppResource("/data/spark-2.4.3/examples/jars/zaodian-0.0.1-SNAPSHOT.jar")
                        .addAppArgs(memberIds);

 

 

经过系列采坑后,原来是  DeployMode 参数制定错了 ,这里将其注释掉 成功解决问题,注释后的代码如下

                SparkLauncher spark = new SparkLauncher()
//                        .setDeployMode("cluster")
                        .setMainClass("com.fsdn.zaodian.spark.XunMeiSpark")
                        .setMaster("spark://192.168.31.205:8180")
                        .setConf(SparkLauncher.EXECUTOR_MEMORY, "512m")
                        .setConf(SparkLauncher.EXECUTOR_CORES,"2")
                        .setSparkHome("/data/spark-2.4.3")
//                        .setSparkHome("D:\\soft\\spark-2.4.3-bin-hadoop2.7")
                        .setVerbose(true)
                        .setAppResource("/data/spark-2.4.3/examples/jars/zaodian-0.0.1-SNAPSHOT.jar")
                        .addAppArgs(memberIds);

 

 

详细解决问题的思路如下:

   经过大量实验, 使用linux shell方式 提交spark集群 可以正常运行,但是使用java代码提交spark集群就会运行错误。因此猜想是提交的参数很可能有问题

shell方式提交后的日志参数:

Spark Executor Command: 
"/usr/java/jdk1.8.0_171/bin/java" 
"-cp" "/data/spark-2.4.3/conf/:/data/spark-2.4.3/jars/*" 
"-Xmx512M" "-Dspark.ui.port=4349" 
"-Dspark.driver.port=35938" "org.apache.spark.executor.CoarseGrainedExecutorBackend" 
"--driver-url" "spark://CoarseGrainedScheduler@okdiz:35938" 
"--executor-id" "1" 
"--hostname" "192.168.31.207" 
"--cores" "1" 
"--app-id" "app-20190710174108-0011" 
"--worker-url" "spark://[email protected]:20157"

java代码提交后的日志参数:

Launch Command: "/usr/java/jdk1.8.0_171/bin/java" 
"-cp" "/data/spark-2.4.3/conf/:/data/spark-2.4.3/jars/*" 
"-Xmx1024M" "-Dspark.executor.memory=512m" 
"-Dspark.driver.supervise=false" 
"-Dspark.app.name=com.fsdn.zaodian.spark.XunMeiSpark" 
"-Dspark.submit.deployMode=cluster" 
"-Dspark.ui.port=4349" 
"-Dspark.master=spark://192.168.31.205:8180" 
"-Dspark.jars=file:/data/spark-2.4.3/examples/jars/zaodian-0.0.1-SNAPSHOT.jar" 
"-Dspark.rpc.askTimeout=10s" 
"-Dspark.executor.cores=2" "org.apache.spark.deploy.worker.DriverWrapper" 
"spark://[email protected]:10440" 
"/data/spark-2.4.3/work/driver-20190710181012-0001/zaodian-0.0.1-SNAPSHOT.jar" 
"com.fsdn.zaodian.spark.XunMeiSpark" 
"420388870078501"

可以看到两个参数有很多不一样的项目,实验后发现是"-Dspark.submit.deployMode=cluster"  的制定导致无法连接到集群的端口。故作此文

你可能感兴趣的:(技术之路)