JAVA学习笔记2020/4/17——线程池、Lambda表达式

第一章 等待唤醒机制

1.1 线程间通信

概念:多个线程在处理同一个资源,但是处理的动作(线程的任务)却不相同。

比如:线程A用来生成包子的,线程B用来吃包子的,包子可以理解为同一资源,线程A与线程B处理的动作,一个是生产,一个是消费,那么线程A与线程B之间就存在线程通信问题。
JAVA学习笔记2020/4/17——线程池、Lambda表达式_第1张图片

为什么要处理线程间通信

多个线程并发执行时, 在默认情况下CPU是随机切换线程的,当我们需要多个线程来共同完成一件任务,并且我们希望他们有规律的执行, 那么多线程之间需要一些协调通信,以此来帮我们达到多线程共同操作一份数据。

如何保证线程间通信有效利用资源

多个线程在处理同一个资源,并且任务不同时,需要线程通信来帮助解决线程之间对同一个变量的使用或操作。 就是多个线程在操作同一份数据时, 避免对同一共享变量的争夺。也就是我们需要通过一定的手段使各个线程能有效的利用资源。而这种手段即—— 等待唤醒机制

1.2 等待唤醒机制

什么是等待唤醒机制

这是多个线程间的一种协作机制。谈到线程我们经常想到的是线程间的竞争race),比如去争夺锁,但这并不是故事的全部,线程间也会有协作机制。就好比在公司里你和你的同事们,你们可能存在在晋升时的竞争,但更多时候你们更多是一起合作以完成某些任务。

就是在一个线程进行了规定操作后,就进入等待状态wait()), 等待其他线程执行完他们的指定代码过后 再将其唤醒notify());在有多个线程进行等待时, 如果需要,可以使用 notifyAll()来唤醒所有的等待线程。

wait/notify 就是线程间的一种协作机制

等待唤醒中的方法

等待唤醒机制就是用于解决线程间通信的问题的,使用到的3个方法的含义如下:

  1. wait:线程不再活动,不再参与调度,进入 wait set 中,因此不会浪费 CPU 资源,也不会去竞争锁了,这时的线程状态即是 WAITING。它还要等着别的线程执行一个特别的动作,也即是“通知notify)”在这个对象上等待的线程从wait set 中释放出来,重新进入到调度队列ready queue)中
  2. notify:则选取所通知对象的 wait set 中的一个线程释放;例如,餐馆有空位置后,等候就餐最久的顾客最先入座。
  3. notifyAll:则释放所通知对象的 wait set 上的全部线程。

注意

哪怕只通知了一个等待的线程,被通知线程也不能立即恢复执行,因为它当初中断的地方是在同步块内,而此刻它已经不持有锁,所以她需要再次尝试去获取锁(很可能面临其它线程的竞争),成功后才能在当初调用 wait 方法之后的地方恢复执行。

总结如下

  • 如果能获取锁,线程就从 WAITING 状态变成 RUNNABLE 状态;
  • 否则,从 wait set 出来,又进入 entry set,线程就从 WAITING 状态又变成 BLOCKED 状态

调用waitnotify方法需要注意的细节

  1. wait方法与notify方法必须要由同一个锁对象调用。因为:对应的锁对象可以通过notify唤醒使用同一个锁对象调用的wait方法后的线程。
  2. wait方法与notify方法是属于Object类的方法的。因为:锁对象可以是任意对象,而任意对象的所属类都是继承了Object类的。
  3. wait方法与notify方法必须要在同步代码块或者是同步函数中使用。因为:必须要通过锁对象调用这2个方法。

1.3 生产者与消费者问题

JAVA学习笔记2020/4/17——线程池、Lambda表达式_第2张图片

/*
    测试类:
	包含main方法,程序执行的入口,启动程序
	创建包子对象;
	创建包子铺线程,开启,生产包子;
	创建吃货线程,开启,吃包子;
 */
public class Demo {
    public static void main(String[] args) {
        //创建包子对象;
        BaoZi bz =new BaoZi();
        //创建包子铺线程,开启,生产包子;
        new BaoZiPu(bz).start();
        //创建吃货线程,开启,吃包子;
        new ChiHuo(bz).start();
    }
}

/*
    资源类:包子类
	设置包子的属性
		皮
		陷
		包子的状态: 有 true,没有 false
 */
public class BaoZi {
    //皮
    String pi;
    //陷
    String xian;
    //包子的状态: 有 true,没有 false,设置初始值为false没有包子
    boolean flag = false;

}

/*
    生产者(包子铺)类:是一个线程类,可以继承Thread
	设置线程任务(run):生产包子
	对包子的状态进行判断
	true:有包子
		包子铺调用wait方法进入等待状态
	false:没有包子
		包子铺生产包子
		增加一些趣味性:交替生产两种包子
			有两种状态(i%2==0)
		包子铺生产好了包子
		修改包子的状态为true有
		唤醒吃货线程,让吃货线程吃包子

	注意:
	    包子铺线程和包子线程关系-->通信(互斥)
	    必须同时同步技术保证两个线程只能有一个在执行
	    锁对象必须保证唯一,可以使用包子对象作为锁对象
	    包子铺类和吃货的类就需要把包子对象作为参数传递进来
	        1.需要在成员位置创建一个包子变量
	        2.使用带参数构造方法,为这个包子变量赋值
 */
public class BaoZiPu extends Thread{
    //1.需要在成员位置创建一个包子变量
    private BaoZi bz;

    //2.使用带参数构造方法,为这个包子变量赋值
    public BaoZiPu(BaoZi bz) {
        this.bz = bz;
    }

    //设置线程任务(run):生产包子
    @Override
    public void run() {
        //定义一个变量
        int count = 0;
        //让包子铺一直生产包子
        while(true){
            //必须同时同步技术保证两个线程只能有一个在执行
            synchronized (bz){
                //对包子的状态进行判断
                if(bz.flag==true){
                    //包子铺调用wait方法进入等待状态
                    try {
                        bz.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }

                //被唤醒之后执行,包子铺生产包子
                //增加一些趣味性:交替生产两种包子
                if(count%2==0){
                    //生产 薄皮三鲜馅包子
                    bz.pi = "薄皮";
                    bz.xian = "三鲜馅";
                }else{
                    //生产 冰皮 牛肉大葱陷
                    bz.pi = "冰皮";
                    bz.xian = "牛肉大葱陷";

                }
                count++;
                System.out.println("包子铺正在生产:"+bz.pi+bz.xian+"包子");
                //生产包子需要3秒钟
                try {
                    Thread.sleep(3000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                //包子铺生产好了包子
                //修改包子的状态为true有
                bz.flag = true;
                //唤醒吃货线程,让吃货线程吃包子
                bz.notify();
                System.out.println("包子铺已经生产好了:"+bz.pi+bz.xian+"包子,吃货可以开始吃了");
            }
        }
    }
}

/*
    消费者(吃货)类:是一个线程类,可以继承Thread
	设置线程任务(run):吃包子
	对包子的状态进行判断
	false:没有包子
		吃货调用wait方法进入等待状态
	true:有包子
		吃货吃包子
		吃货吃完包子
		修改包子的状态为false没有
		吃货唤醒包子铺线程,生产包子
 */
public class ChiHuo extends Thread{
    //1.需要在成员位置创建一个包子变量
    private BaoZi bz;

    //2.使用带参数构造方法,为这个包子变量赋值
    public ChiHuo(BaoZi bz) {
        this.bz = bz;
    }
    //设置线程任务(run):吃包子
    @Override
    public void run() {
        //使用死循环,让吃货一直吃包子
        while (true){
            //必须同时同步技术保证两个线程只能有一个在执行
            synchronized (bz){
                //对包子的状态进行判断
                if(bz.flag==false){
                    //吃货调用wait方法进入等待状态
                    try {
                        bz.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }

                //被唤醒之后执行的代码,吃包子
                System.out.println("吃货正在吃:"+bz.pi+bz.xian+"的包子");
                //吃货吃完包子
                //修改包子的状态为false没有
                bz.flag = false;
                //吃货唤醒包子铺线程,生产包子
                bz.notify();
                System.out.println("吃货已经把:"+bz.pi+bz.xian+"的包子吃完了,包子铺开始生产包子");
                System.out.println("----------------------------------------------------");
            }
        }
    }
}

第二章 线程池

2.1 线程池思想概述

我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题:

如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。

那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?

在Java中可以通过线程池来达到这样的效果。今天我们就来详细讲解一下Java的线程池。

2.2 线程池概念

  • 线程池:其实就是一个容纳多个线程的容器,其中的线程可以反复使用,省去了频繁创建线程对象的操作,无需反复创建线程而消耗过多资源。

由于线程池中有很多操作都是与优化资源相关的,我们在这里就不多赘述。我们通过一张图来了解线程池的工作原理:
JAVA学习笔记2020/4/17——线程池、Lambda表达式_第3张图片

合理利用线程池能够带来三个好处

  1. 降低资源消耗。减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
  2. 提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
  3. 提高线程的可管理性。可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。

2.3 线程池的使用

线程池:JDK1.5之后提供的
java.util.concurrent.Executors:线程池的工厂类,用来生成线程池
Executors类中的静态方法:
static ExecutorService newFixedThreadPool(int nThreads): 创建一个可重用固定线程数的线程池
参数:
int nThreads:创建线程池中包含的线程数量
返回值:
ExecutorService接口,返回的是ExecutorService接口的实现类对象,我们可以使用ExecutorService接口接收(面向接口编程)
java.util.concurrent.ExecutorService:线程池接口
用来从线程池中获取线程,调用start方法,执行线程任务
submit(Runnable task): 提交一个 Runnable 任务用于执行,获取线程池中的某一个线程对象,并执行。
关闭/销毁线程池的方法: void shutdown()
线程池的使用步骤:
1.使用线程池的工厂类Executors里边提供的静态方法newFixedThreadPool生产一个指定线程数量的线程池
2.创建一个类,实现Runnable接口,重写run方法,设置线程任务
3.调用ExecutorService中的方法submit,传递线程任务(实现类),开启线程,执行run方法
4.调用ExecutorService中的方法shutdown销毁线程池(不建议执行)

public class Demo01ThreadPool {
    public static void main(String[] args) {
        //1.使用线程池的工厂类Executors里边提供的静态方法newFixedThreadPool生产一个指定线程数量的线程池
        ExecutorService es = Executors.newFixedThreadPool(2);
        //3.调用ExecutorService中的方法submit,传递线程任务(实现类),开启线程,执行run方法
        es.submit(new RunnableImpl());//pool-1-thread-1创建了一个新的线程执行
        //线程池会一直开启,使用完了线程,会自动把线程归还给线程池,线程可以继续使用
        es.submit(new RunnableImpl());//pool-1-thread-1创建了一个新的线程执行
        es.submit(new RunnableImpl());//pool-1-thread-2创建了一个新的线程执行

        //4.调用ExecutorService中的方法shutdown销毁线程池(不建议执行)
        es.shutdown();

        es.submit(new RunnableImpl());//抛异常,线程池都没有了,就不能获取线程了
    }

}

/*
    2.创建一个类,实现Runnable接口,重写run方法,设置线程任务
 */
public class RunnableImpl implements Runnable{
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName()+"创建了一个新的线程执行");
    }
}

第三章 Lambda表达式

3.1 函数式编程思想概述

在数学中,函数就是有输入量、输出量的一套计算方案,也就是“拿什么东西做什么事情”。相对而言,面向对象过分强调“必须通过对象的形式来做事情”,而函数式思想则尽量忽略面向对象的复杂语法——强调做什么,而不是以什么形式做。

面向对象的思想:做一件事情,找一个能解决这个事情的对象,调用对象的方法,完成事情.

函数式编程思想:只要能获取到结果,谁去做,怎么做的都不重要,重视的是结果,不重视过程

3.2 冗余的Runnable代码

传统写法

当需要启动一个线程去完成任务时,通常会通过java.lang.Runnable接口来定义任务内容,并使用java.lang.Thread类来启动该线程。代码如下:

/*
    使用实现Runnable接口的方式实现多线程程序
 */
public class Demo01Runnable {
    public static void main(String[] args) {
        //创建Runnable接口的实现类对象
        RunnableImpl run = new RunnableImpl();
        //创建Thread类对象,构造方法中传递Runnable接口的实现类
        Thread t = new Thread(run);
        //调用start方法开启新线程,执行run方法
        t.start();

        //简化代码,使用匿名内部类,实现多线程程序
        Runnable r = new Runnable(){
            @Override
            public void run() {
                System.out.println(Thread.currentThread().getName()+" 新线程创建了");
            }
        };
        new Thread(r).start();

        //简化代码
        new Thread(new Runnable(){
            @Override
            public void run() {
                System.out.println(Thread.currentThread().getName()+" 新线程创建了");
            }
        }).start();
    }
}


/*
    创建Runnable接口的实现类,重写run方法,设置线程任务
 */
public class RunnableImpl implements Runnable{
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName()+" 新线程创建了");
    }
}

本着“一切皆对象”的思想,这种做法是无可厚非的:首先创建一个Runnable接口的匿名内部类对象来指定任务内容,再将其交给一个线程来启动。

代码分析

对于Runnable的匿名内部类用法,可以分析出几点内容:

  • Thread类需要Runnable接口作为参数,其中的抽象run方法是用来指定线程任务内容的核心;
  • 为了指定run的方法体,不得不需要Runnable接口的实现类;
  • 为了省去定义一个RunnableImpl实现类的麻烦,不得不使用匿名内部类;
  • 必须覆盖重写抽象run方法,所以方法名称、方法参数、方法返回值不得不再写一遍,且不能写错;
  • 而实际上,似乎只有方法体才是关键所在。

3.3 编程思想转换

做什么,而不是怎么做

我们真的希望创建一个匿名内部类对象吗?
不。我们只是为了做这件事情而不得不创建一个对象。
我们真正希望做的事情是:
run方法体内的代码传递给Thread类知晓。

传递一段代码——这才是我们真正的目的。而创建对象只是受限于面向对象语法而不得不采取的一种手段方式。
那,有没有更加简单的办法?
如果我们将关注点从“怎么做”回归到“做什么”的本质上,就会发现只要能够更好地达到目的,过程与形式其实并不重要。
2014年3月Oracle所发布的Java 8(JDK 1.8)中,加入了Lambda表达式的重量级新特性,为我们打开了新世界的大门。

3.4 体验Lambda的更优写法

借助Java 8的全新语法,上述Runnable接口的匿名内部类写法可以通过更简单的Lambda表达式达到等效:

/*
    Lambda表达式的标准格式:
        由三部分组成:
            a.一些参数
            b.一个箭头
            c.一段代码
        格式:
            (参数列表) -> {一些重写方法的代码};
        解释说明格式:
            ():接口中抽象方法的参数列表,没有参数,就空着;有参数就写出参数,多个参数使用逗号分隔
            ->:传递的意思,把参数传递给方法体{}
            {}:重写接口的抽象方法的方法体
 */
public class Demo02Lambda {
    public static void main(String[] args) {
        //使用匿名内部类的方式,实现多线程
        new Thread(new Runnable(){
            @Override
            public void run() {
                System.out.println(Thread.currentThread().getName()+" 新线程创建了");
            }
        }).start();

        //使用Lambda表达式,实现多线程
        new Thread(()->{//这个小括号()就是run参数,run的参数是空的,所以他也是空的
                System.out.println(Thread.currentThread().getName()+" 新线程创建了");
            }
        ).start();

        //优化省略Lambda
        new Thread(()->System.out.println(Thread.currentThread().getName()+" 新线程创建了")).start();
    }
}

3.5 回顾匿名内部类

Lambda是怎样击败面向对象的?在上例中,核心代码其实只是如下所示的内容:

   () -> System.out.println("多线程任务执行!")

为了理解Lambda的语义,我们需要从传统的代码起步。

使用实现类

要启动一个线程,需要创建一个Thread类的对象并调用start方法。而为了指定线程执行的内容,需要调用Thread类的构造方法:

  • public Thread(Runnable target)

为了获取Runnable接口的实现对象,可以为该接口定义一个实现类RunnableImpl

public class RunnableImpl implements Runnable {
	@Override
	public void run() {
		System.out.println("多线程任务执行!");
	}
}

然后创建该实现类的对象作为Thread类的构造参数:

public class Demo03ThreadInitParam {
	public static void main(String[] args) {
		Runnable task = new RunnableImpl();
		new Thread(task).start();
	}
}

使用匿名内部类

这个RunnableImpl类只是为了实现Runnable接口而存在的,而且仅被使用了唯一一次,所以使用匿名内部类的语法即可省去该类的单独定义,即匿名内部类:

public class Demo04ThreadNameless {
	public static void main(String[] args) {
		new Thread(new Runnable() {
			@Override
			public void run() {
				System.out.println("多线程任务执行!");
			}
		}).start();
	}
}

匿名内部类的好处与弊端

一方面,匿名内部类可以帮我们省去实现类的定义;另一方面,匿名内部类的语法——确实太复杂了!

语义分析

仔细分析该代码中的语义,Runnable接口只有一个run方法的定义:

  • public abstract void run();

即制定了一种做事情的方案(其实就是一个函数):

  • 无参数:不需要任何条件即可执行该方案。
  • 无返回值:该方案不产生任何结果。
  • 代码块(方法体):该方案的具体执行步骤。

同样的语义体现在Lambda语法中,要更加简单:

   () -> System.out.println("多线程任务执行!")
  • 前面的一对小括号即run方法的参数(无),代表不需要任何条件;
  • 中间的一个箭头代表将前面的参数传递给后面的代码;
  • 后面的输出语句即业务逻辑代码。

3.6 Lambda标准格式

Lambda省去面向对象的条条框框,格式由3个部分组成:

  • 一些参数
  • 一个箭头
  • 一段代码

Lambda表达式的标准格式为:

(参数类型 参数名称) -> { 代码语句 }

格式说明:

  • 小括号内的语法与传统方法参数列表一致:无参数则留空;多个参数则用逗号分隔。
  • ->是新引入的语法格式,代表指向动作。
  • 大括号内的语法与传统方法体要求基本一致。

3.7 练习:使用Lambda标准格式(无参无返回)

需求:
给定一个厨子Cook接口,内含唯一的抽象方法makeFood,且无参数、无返回值。
使用Lambda的标准格式调用invokeCook方法,打印输出“吃饭啦!”字样

public class Demo01Cook {
    public static void main(String[] args) {
        //调用invokeCook方法,参数是Cook接口,传递Cook接口的匿名内部类对象
        invokeCook(new Cook() {
            @Override
            public void makeFood() {
                System.out.println("吃饭了");
            }
        });

        //使用Lambda表达式,简化匿名内部类的书写
        invokeCook(()->{
            System.out.println("吃饭了");
        });

        //优化省略Lambda
        invokeCook(()-> System.out.println("吃饭了"));
    }

    //定义一个方法,参数传递Cook接口,方法内部调用Cook接口中的方法makeFood
    public static void invokeCook(Cook cook){
        cook.makeFood();
    }
}

/*
    定一个厨子Cook接口,内含唯一的抽象方法makeFood
 */
public interface Cook {
    //定义无参数无返回值的方法makeFood
    public abstract void makeFood();
}

备注:小括号代表Cook接口makeFood抽象方法的参数为空,大括号代表makeFood的方法体。

3.8 Lambda的参数和返回值

需求:
使用数组存储多个Person对象
对数组中的Person对象使用Arrays的sort方法通过年龄进行升序排序

下面举例演示java.util.Comparator接口的使用场景代码,其中的抽象方法定义为:

  • public abstract int compare(T o1, T o2);

当需要对一个对象数组进行排序时,Arrays.sort方法需要一个Comparator接口实例来指定排序的规则。假设有一个Person类,含有String nameint age两个成员变量:

public class Demo01Arrays {
    public static void main(String[] args) {
        //使用数组存储多个Person对象
        Person[] arr = {
                new Person("柳岩",38),
                new Person("迪丽热巴",18),
                new Person("古力娜扎",19)
        };

        //对数组中的Person对象使用Arrays的sort方法通过年龄进行升序(前边-后边)排序
        /*Arrays.sort(arr, new Comparator() {
            @Override
            public int compare(Person o1, Person o2) {
                return o1.getAge()-o2.getAge();
            }
        });*/

        //使用Lambda表达式,简化匿名内部类
        Arrays.sort(arr,(Person o1, Person o2)->{
            return o1.getAge()-o2.getAge();
        });

        //优化省略Lambda
        Arrays.sort(arr,(o1, o2)->o1.getAge()-o2.getAge());

        //遍历数组
        for (Person p : arr) {
            System.out.println(p);
        }
    }
}

public class Person {
    private String name;
    private int age;

    public Person() {
    }

    public Person(String name, int age) {
        this.name = name;
        this.age = age;
    }

    @Override
    public String toString() {
        return "Person{" +
                "name='" + name + '\'' +
                ", age=" + age +
                '}';
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }
}

代码分析

下面我们来搞清楚上述代码真正要做什么事情。

  • 为了排序,Arrays.sort方法需要排序规则,即Comparator接口的实例,抽象方法compare是关键;
  • 为了指定compare的方法体,不得不需要Comparator接口的实现类;
  • 为了省去定义一个ComparatorImpl实现类的麻烦,不得不使用匿名内部类;
  • 必须覆盖重写抽象compare方法,所以方法名称、方法参数、方法返回值不得不再写一遍,且不能写错;
  • 实际上,只有参数和方法体才是关键。

3.9 练习:使用Lambda标准格式(有参有返回)

需求:
给定一个计算器Calculator接口,内含抽象方法calc可以将两个int数字相加得到和值
使用Lambda的标准格式调用invokeCalc方法,完成120和130的相加计算

public class Demo01Calculator {
    public static void main(String[] args) {
        //调用invokeCalc方法,方法的参数是一个接口,可以使用匿名内部类
        invokeCalc(10, 20, new Calculator() {
            @Override
            public int calc(int a, int b) {
                return a+b;
            }
        });

        //使用Lambda表达式简化匿名内部类的书写
        invokeCalc(120,130,(int a,int b)->{
            return a + b;
        });

        //优化省略Lambda
        invokeCalc(120,130,(a,b)-> a + b);
    }

    /*
        定义一个方法
        参数传递两个int类型的整数
        参数传递Calculator接口
        方法内部调用Calculator中的方法calc计算两个整数的和
     */
    public static void invokeCalc(int a,int b,Calculator c){
        int sum = c.calc(a,b);
        System.out.println(sum);
    }
}

/*
    给定一个计算器Calculator接口,内含抽象方法calc可以将两个int数字相加得到和值
 */
public interface Calculator {
    //定义一个计算两个int整数和的方法并返回结果
    public abstract int calc(int a,int b);
}

备注:小括号代表Calculator接口calc抽象方法的参数,大括号代表calc的方法体。

3.10 Lambda省略格式

Lambda表达式:是可推导,可以省略
凡是根据上下文推导出来的内容,都可以省略书写
可以省略的内容:
1.(参数列表):括号中参数列表的数据类型,可以省略不写
2.(参数列表):括号中的参数如果只有一个,那么类型和()都可以省略
3.{一些代码}:如果{}中的代码只有一行,无论是否有返回值,都可以省略({},return,分号)
注意:要省略{},return,分号,必须一起省略

public class Demo01ArrayList {
    public static void main(String[] args) {
        //JDK1.7版本之前,创建集合对象必须把前后的泛型都写上
        ArrayList<String> list01 = new ArrayList<String>();

        //JDK1.7版本之后,=号后边的泛型可以省略,后边的泛型可以根据前边的泛型推导出来
        ArrayList<String> list02 = new ArrayList<>();
    }
}

==================================================================

public class Demo02Lambda {
    public static void main(String[] args) {
        //使用匿名内部类的方式,实现多线程
        new Thread(new Runnable(){
            @Override
            public void run() {
                System.out.println(Thread.currentThread().getName()+" 新线程创建了");
            }
        }).start();

        //使用Lambda表达式,实现多线程
        new Thread(()->{//这个小括号()就是run参数,run的参数是空的,所以他也是空的
                System.out.println(Thread.currentThread().getName()+" 新线程创建了");
            }
        ).start();

        //优化省略Lambda
        new Thread(()->System.out.println(Thread.currentThread().getName()+" 新线程创建了")).start();
    }
}

==================================================================

public class Demo01Cook {
    public static void main(String[] args) {
        //调用invokeCook方法,参数是Cook接口,传递Cook接口的匿名内部类对象
        invokeCook(new Cook() {
            @Override
            public void makeFood() {
                System.out.println("吃饭了");
            }
        });

        //使用Lambda表达式,简化匿名内部类的书写
        invokeCook(()->{
            System.out.println("吃饭了");
        });

        //优化省略Lambda
        invokeCook(()-> System.out.println("吃饭了"));
    }

    //定义一个方法,参数传递Cook接口,方法内部调用Cook接口中的方法makeFood
    public static void invokeCook(Cook cook){
        cook.makeFood();
    }
}

==================================================================

public class Demo01Arrays {
    public static void main(String[] args) {
        //使用数组存储多个Person对象
        Person[] arr = {
                new Person("柳岩",38),
                new Person("迪丽热巴",18),
                new Person("古力娜扎",19)
        };

        //对数组中的Person对象使用Arrays的sort方法通过年龄进行升序(前边-后边)排序
        /*Arrays.sort(arr, new Comparator() {
            @Override
            public int compare(Person o1, Person o2) {
                return o1.getAge()-o2.getAge();
            }
        });*/

        //使用Lambda表达式,简化匿名内部类
        Arrays.sort(arr,(Person o1, Person o2)->{
            return o1.getAge()-o2.getAge();
        });

        //优化省略Lambda
        Arrays.sort(arr,(o1, o2)->o1.getAge()-o2.getAge());

        //遍历数组
        for (Person p : arr) {
            System.out.println(p);
        }
    }
}

==================================================================

public class Demo01Calculator {
    public static void main(String[] args) {
        //调用invokeCalc方法,方法的参数是一个接口,可以使用匿名内部类
        invokeCalc(10, 20, new Calculator() {
            @Override
            public int calc(int a, int b) {
                return a+b;
            }
        });

        //使用Lambda表达式简化匿名内部类的书写
        invokeCalc(120,130,(int a,int b)->{
            return a + b;
        });

        //优化省略Lambda
        invokeCalc(120,130,(a,b)-> a + b);
    }

    /*
        定义一个方法
        参数传递两个int类型的整数
        参数传递Calculator接口
        方法内部调用Calculator中的方法calc计算两个整数的和
     */
    public static void invokeCalc(int a,int b,Calculator c){
        int sum = c.calc(a,b);
        System.out.println(sum);
    }
}

3.11 Lambda的使用前提

Lambda的语法非常简洁,完全没有面向对象复杂的束缚。但是使用时有几个问题需要特别注意:

  1. 使用Lambda必须具有接口,且要求接口中有且仅有一个抽象方法。
    无论是JDK内置的RunnableComparator接口还是自定义的接口,只有当接口中的抽象方法存在且唯一时,才可以使用Lambda
  2. 使用Lambda必须具有上下文推断。
    也就是方法的参数或局部变量类型必须为Lambda对应的接口类型,才能使用Lambda作为该接口的实例。

备注:有且仅有一个抽象方法的接口,称为“函数式接口”。

你可能感兴趣的:(JAVA)