OpenCV—python 字符分割

本博客主要探讨基于传统方法的验证码识别,更多的是做粘连扭曲的验证码识别的各种分割技术,其实在验证码识别这一块,深度学习做的已经非常好了,识别效率与速度都是不错的。【验证码识别】,我这里只是做一些技术探讨,关于【 基于投影的字符分割】 请查看。

一、基于连通域的字符分割

import queue
from PIL import Image

def cfs(img):
    """传入二值化后的图片进行连通域分割"""
    pixdata = img.load()
    w, h = img.size
    visited = set()
    q = queue.Queue()
    offset = [(-1, -1), (0, -1), (1, -1), (-1, 0), (1, 0), (-1, 1), (0, 1), (1, 1)]
    cuts = []
    for x in range(w):
        for y in range(h):
            x_axis = []
            if pixdata[x, y] == 0 and (x, y) not in visited:
                q.put((x, y))
                visited.add((x, y))
            while not q.empty():
                x_p, y_p = q.get()
                for x_offset, y_offset in offset:
                    x_c, y_c = x_p + x_offset, y_p + y_offset
                    if (x_c, y_c) in visited:
                        continue
                    visited.add((x_c, y_c))
                    try:
                        if pixdata[x_c, y_c] == 0:
                            q.put((x_c, y_c))
                            x_axis.append(x_c)
                    except:
                        pass
            if x_axis:
                min_x, max_x = min(x_axis), max(x_axis)
                if max_x - min_x > 3:
                    # 宽度小于3的认为是噪点,根据需要修改
                    cuts.append((min_x, max_x + 1))
    return cuts



def binarizing(img, threshold):
    """传入image对象进行灰度、二值处理"""
    img = img.convert("L")  # 转灰度
    pixdata = img.load()
    w, h = img.size
    # 遍历所有像素,大于阈值的为黑色
    for y in range(h):
        for x in range(w):
            if pixdata[x, y] < threshold:
                pixdata[x, y] = 0
            else:
                pixdata[x, y] = 255
    return img

img = Image.open('C98Q.png')
img = binarizing(img, 200)
cuts = cfs(img)
w, h = img.size
for i, item in enumerate(cuts):
    box = (item[0], 0, item[1], h)
    img.crop(box).save("./" + str(i+10) + ".png")

递归法
在这里插入图片描述在这里插入图片描述在这里插入图片描述

import numpy as np
import cv2
from PIL import Image


def getPoint(x,y,data,subdata=None):
    a=[0,-1,0,1,0,-2,0,2,0,-3,0,3,0,-4,0,4,0,-5,0,5]
    b=[1,0,-1,0,2,0,-2,0,3,0,-3,0,4,0,-4,0,5,0,-5,0]
    width,height=data.shape
    if subdata is None:
        subdata=[]
    if x>5 and y<height-5 and y>5 and x<width-5:
        for i in range(20):
            if data[x+a[i]][y+b[i]]==1:
                subdata.append((x+a[i],y+b[i]))
                data[x+a[i]][y+b[i]]=2
                getPoint(x+a[i],y+b[i],data,subdata)
    subdata.append((x,y))
 
def getcell(data):
    list1=[]
    index=0
    flag=True
    for y in range(data.shape[1]):
        for x in range(data.shape[0]):
            if data[x][y]==1:
                if list1:
                    for i in range(len(list1)):
                        if (x,y) in list1[i]:
                            flag=False
                if not flag:
                    continue
                list1.append([])
                getPoint(x,y,data,list1[index])#调用流水算法
                index+=1
            else :
                continue
    
    for index in range(len(list1)):
        l=list1[index][0][0]
        t=list1[index][0][1]
        r=list1[index][0][0]
        b=list1[index][0][1]
        for i in list1[index]:
            x=i[0]
            y=i[1]
            l=min(l,x)
            t=min(t,y)
            r=max(r,x)
            b=max(b,y)
        w=r-l+1
        h=b-t+1
        if (w*h <8):#去除小色块
            continue
        img0=np.zeros([w,h])#创建全0矩阵
        for x,y in list1[index]:
            img0[x-l][y-t]=1
        img0[img0<1]=255
        img1=Image.fromarray(img0)
        img1=img1.convert('RGB')
        img1.save('img2/'+str(index)+'.png')
if __name__=="__main__":
    filename='captcha1.png'
    data=cv2.imread(filename,2) 
    allimg=getcell(data)

连通域:https://blog.csdn.net/fox64194167/article/details/80557242
连通域:https://blog.csdn.net/qq_32590631/article/details/78806388
泛红填充:http://www.voidcn.com/article/p-vilyctpt-mr.html
python生成中文验证码:https://www.cnblogs.com/whu-zeng/p/4855480.html
Python生成验证码:https://blog.csdn.net/Dick633/article/details/83057808

区域填充之扫描线种子法的Python实现:https://blog.csdn.net/u013859301/article/details/53292523

基于HSV颜色的ROI区域提取 https://blog.csdn.net/xull88619814/article/details/82050800

文字切割垂直投影算法
https://blog.csdn.net/jylonger/article/details/88043031

你可能感兴趣的:(OpenCV,opencv)