- 【机器学习与数据挖掘实战 | 医疗】案例18:基于Apriori算法的中医证型关联规则分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘Aprioripython关联规则人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- TensorFlow Serving学习笔记3: 组件调用关系
一、整体架构TensorFlowServing采用模块化设计,核心组件包括:Servables:可服务对象(如模型、查找表)Managers:管理Servable生命周期(加载/卸载)Loaders:负责Servable的初始化状态管理Sources:提供新版本Servable的LoaderAspiredVersions:Servable的期望状态集合Core:连接所有组件的核心枢纽APIs:gR
- 【C/C++】单元测试实战:Stub与Mock框架解析
CodeWithMe
C/C++c语言c++单元测试
C++单元测试中的Stub/Mock框架详解在单元测试中,Stub(打桩)和Mock都是替代真实依赖以简化测试的技术。通常,Stub(或Fake)提供了一个简化实现,用于替代生产代码中的真实对象(例如用内存文件系统替代磁盘文件系统),而Mock则是在运行时预设了期望行为的对象,用来验证代码与依赖之间的交互是否符合预期。下面我们重点介绍几种常见的C++Stub/Mock框架:GoogleMock、F
- 降低20%成本暴雨定制化液冷系统落地
暴雨信息凭借多年液冷设计及实施经验,帮助某知名自动驾驶企业完成了车端算力设备和后端数据中心的液冷改造升级,进一步提升了其车端实时数据处理能力及后端模型训练优化效率。但在后期持续运维过程中,由于测试中心尚未配备液冷系统,只能依赖外接散热器和水泵来进行液冷设备的测试与故障排除,不仅噪音大还存在较大的冷却液泄漏风险。为此,客户期望我们帮助其建立起一套规范化的液冷测试系统,以解决当下困境。暴雨信息专业技术
- 2025大模型入门必读:Prompt指令技巧精讲,看这一篇就够了!
大模型研究院
prompt人工智能学习方法机器学习大数据大模型产品经理
一、提示词的基本概念在人工智能生成内容(AIGC)迅速发展的今天,如何有效地与AI大模型沟通,让它们产出我们真正需要的内容,已经成为一项重要技能。而这项技能的核心,就是本文要深入探讨的"提示词工程"(PromptEngineering)。1.1什么是提示词提示词(Prompt)是用户输入给AI大模型的指令,是人类与AI之间沟通的桥梁。一个好的提示词能够明确地传达我们的意图,引导AI生成符合我们期望
- Java设计模式之适配器模式详解
季鸢
设计模式java设计模式适配器模式
Java设计模式之适配器模式详解一、适配器模式核心思想核心目标:将不兼容的接口转换为客户端期望的接口,解决类之间因接口不匹配而无法协作的问题。如同现实中的电源适配器,让不同规格的插头兼容插座。二、适配器模式类图(Mermaid)1.对象适配器(推荐方式)持有引用Client«interface»Target+request()Adapter-adaptee:Adaptee+request()Ada
- 提示词框架(5)--APE
放天狼
AI提示词框架人工智能
APE框架,是一个精简的提示词框架,主要由Action(行动),Purepose(目的),Expectation(期望),三部分组成。这个框架虽然简单,但是用好却不容易,需要动下脑子。A:Action(行动)定义:告知AI要做的事情示例:帮我写一篇鲁迅先生的介绍P:Purpose(目的)定义:你让AI完成Action的目的是什么示例:介绍主要是用来给学生上历史课使用,希望学生能对鲁迅的一生和贡献进
- Python web框架FastAPI——一个比Flask和Tornada更高性能的API 框架
Python进阶者
中间件pythonwebhttpdocker
点击上方“Python爬虫与数据挖掘”,进行关注回复“书籍”即可获赠Python从入门到进阶共10本电子书今日鸡汤借问酒家何处有,牧童遥指杏花村。0前言前几天给大家分别分享了(入门篇)简析Pythonweb框架FastAPI——一个比Flask和Tornada更高性能的API框架和(进阶篇)Pythonweb框架FastAPI——一个比Flask和Tornada更高性能的API框架。今天欢迎大家来
- 足球赛事数据API:开发者指南与应用实践
行走的体育数据库
大数据
在数字化体育时代,足球赛事数据API已成为开发者构建比分应用、分析平台和博彩工具的核心基础设施。本文将解析主流足球数据API的功能差异、技术选型策略及典型应用场景。一、为什么需要足球赛事数据API?实时性需求球迷期望获取秒级更新的比分、红黄牌、换人等事件,传统爬虫难以满足高频率与稳定性要求。数据维度深度专业应用需结构化数据支持,如球员跑动热图、预期进球(xG)、传球成功率等高阶统计。全球化覆盖从欧
- 【Python报错】成功解决error: subprocess-exited-with-error:安装lxml模块不再报错
云天徽上
python运行报错解决记录python开发语言lxml
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- AutomatedLab项目中PowerShell期望状态配置(DSC)的高级应用指南
邵娇湘
AutomatedLab项目中PowerShell期望状态配置(DSC)的高级应用指南AutomatedLabAutomatedLabisaprovisioningsolutionandframeworkthatletsyoudeploycomplexlabsonHyperVandAzurewithsimplePowerShellscripts.ItsupportsallWindowsoperat
- 46道DevOps高频题整理(附答案背诵版)
编程大全
面试题运维DevOpsDevOps面试题
简述什么是DevOps工作流程?DevOps工作流程是一种将开发和运维团队紧密结合起来的方法,旨在实现软件开发和交付的高效性和可靠性。它强调自动化和持续集成,以便频繁地进行软件交付和部署。DevOps工作流程通常包括以下阶段:需求规划和分析:开发团队与业务团队密切合作,了解用户需求和期望。他们收集并分析需求,并与业务团队一起确定开发的优先级和时间表。代码开发:开发团队使用敏捷方法进行代码开发,遵循
- 强化学习系列——PPO算法
lqjun0827
算法深度学习算法人工智能
强化学习系列——PPO算法PPO算法一、背景知识:策略梯度&Advantage二、引入重要性采样(ImportanceSampling)三、PPO-Clip目标函数推导✅四、总结公式(一图总览)参考文献PPO示例代码实现补充内容:重要性采样一、问题背景:我们想估计某个期望❗问题:二、引入重要性采样(ImportanceSampling)三、离散采样形式(蒙特卡洛估计)四、标准化的重要性采样五、在强
- 无人驾驶汽车运动控制分为纵向控制和横向控制
无人驾驶汽车运动控制分为纵向控制和横向控制。纵向控制是指通过对油门和制动的协调,实现对期望车速的精确跟随。横向控制实现无人驾驶汽车的路径跟踪。其目的是在保证车辆操纵稳定性的前提下,不仅使车辆精确跟踪期望道路,同时使车辆具有良好的动力性和乘坐舒适性。lqr/Func_Alpha_Pos.m,699lqr/Func_CircularReferenceTrajGenerate.m,938lqr/Func
- 【Kubernetes】CKA Simulator Kubernetes 1.31
陈陈CHENCHEN
Kuberneteskubernetes容器
最近为了准备CKA认证,整理了模拟题,期望能帮助到需要的小伙伴们!Question1|ContextsYouhaveaccesstomultipleclustersfromyourmainterminalthroughkubectlcontexts.Writeallthosecontextnamesinto/opt/course/1/contexts.Nextwriteacommandtodisp
- 高效编程:DeepSeek 官方提示词库
摆烂大大王
deepseekAIGCai人工智能
写更少的提示词,做更多的创造:结构化思维让AI成为你的“第二大脑”一、DeepSeek编程提示词的核心设计哲学DeepSeek在编程辅助场景中,始终贯彻RICE方法论:Role(角色):明确AI身份(如“代码优化专家”)Input(输入):规范代码/需求的描述格式Capability(能力):声明所需技能(如“跨文件重构”)Expectation(期望):定义输出标准(如“带注释的迭代版代码”)这
- 揭秘互联网大数据求职面试:从Zookeeper到数据挖掘
小葛呀
大数据面试宝典互联网大数据ZookeeperYarnRedisKafkaHDFS
场景:互联网大数据求职者面试角色介绍:面试官老黑:严肃而专业,技术深入,擅长引导候选人展示自己。程序员小白:搞笑且略显紧张,对基础问题能应付自如,但面对复杂问题时经常词穷。第一轮提问:老黑:"小白,你对Zookeeper的理解是什么?它在分布式系统中扮演什么角色?"小白:"Zookeeper...是个协调者,负责管理配置和同步数据...就像一个团队的协调员,确保每个节点都知道该做什么。"老黑:"没
- 在大数据求职面试中如何回答分布式协调与数据挖掘问题
在大数据求职面试中如何回答分布式协调与数据挖掘问题场景:小白的大数据求职面试小白是一名初出茅庐的程序员,今天他来到一家知名互联网公司的面试现场,面试官是经验丰富的老黑。以下是他们之间的对话:第一轮提问:分布式与数据采集老黑:小白,你对Zookeeper有了解吗?小白:当然,Zookeeper是一个分布式协调服务,主要用于分布式应用程序中的同步服务、命名服务和配置管理。老黑:不错,你能说说Flume
- 访问服务器项目,服务器可以ping通,但是端口访问不到
এ᭄请你吃糖℘
服务器运维
原因:端口未开放假设项目部署服务器为205,在90服务器访问205项目1、首先在205确定项目启动,看端口是否占用#Windows(检查端口占用)netstat-ano|findstr"8103"期望输出:TCP0.0.0.0:81030.0.0.0:0LISTENING12342、205本地浏览器访问localhost:8103/salaryPerson?time=2025-06&searchV
- 另类数据挖掘:如何用网络搜索数据预测上市公司业绩?
量化价值投资入门到精通
数据挖掘人工智能ai
另类数据挖掘:如何用网络搜索数据预测上市公司业绩?关键词:另类数据、网络搜索数据、业绩预测、文本挖掘、机器学习、量化投资、自然语言处理摘要:本文探讨了如何利用网络搜索数据这一另类数据源来预测上市公司业绩。我们将从理论基础出发,详细分析搜索数据与公司业绩之间的关联机制,介绍完整的数据采集、处理和分析流程,并通过实际案例展示如何构建预测模型。文章还将讨论该方法的局限性、实际应用场景以及未来发展方向,为
- css实现文字滚动
css实现文字滚动HTMLCSS文字宽度没有超出容器的问题期望继续滚动利用js判断是否需要滚动dome地址css实现文字滚动css实现简单的文字横向滚动效果使用marquee标签当然也可以实现,但是marquee标签已经被淘汰了,一些属性和浏览器不可用HTMLCSS.z-text-roll{/*最大宽度*/width:100%;/*不允许换行*/white-space:nowrap;/*超出隐藏*
- “相关分析”
不解风情的老妖怪哎
数据分析学习笔记数据分析大数据
一、相关分析的核心概念1.定义(1)衡量两个或多个变量之间的线性或单调关系的强度和方向(正/负相关)。(2)注意:相关性≠因果关系。2.相关系数的范围(1)取值范围为[-1,1]:1:完全正相关-1:完全负相关0:无线性相关3.应用场景(1)探索变量间的潜在关系(如收入与消费水平、广告投入与销售额)。(2)辅助特征选择(如剔除高度相关的变量,避免多重共线性)。二、常用相关系数及方法1.Pearso
- 解锁数据宝藏:数据挖掘之数据预处理全解析
奔跑吧邓邓子
必备核心技能数据挖掘数据预处理机器学习
目录一、引言:数据预处理——数据挖掘的基石二、数据预处理的重要性2.1现实数据的问题剖析2.2数据预处理的关键作用三、数据预处理的核心方法3.1数据清洗3.1.1缺失值处理3.1.2离群点处理3.1.3噪声处理3.2数据集成3.2.1实体识别3.2.2冗余处理3.2.3数据值冲突处理3.3数据变换3.3.1平滑处理3.3.2聚合操作3.3.3离散化3.3.4归一化四、数据预处理的实践流程4.1数据
- Flask-Login 用户认证与会话管理
麦克羊
Flask-Login用户认证用户模型UserMixin登录登出
""背景简介Flask是一个流行的PythonWeb开发框架,它以轻量级和灵活著称。Flask-Login是Flask的一个扩展,它提供了一套完整的用户认证系统。本篇博客将基于Flask-Login的官方文档,介绍如何在Flask应用中实现用户认证和会话管理。5.3为Flask-Login准备用户模型Flask-Login扩展与应用程序的用户模型紧密合作,它期望用户模型中实现四个关键属性和方法:i
- 数据挖掘助力AI人工智能提升竞争力
AI大模型应用工坊
人工智能数据挖掘ai
数据挖掘助力AI人工智能提升竞争力关键词:数据挖掘、AI人工智能、竞争力提升、数据处理、算法应用摘要:本文深入探讨了数据挖掘如何助力AI人工智能提升竞争力。首先介绍了数据挖掘与AI的背景知识,包括目的、预期读者、文档结构和相关术语。接着阐述了数据挖掘和AI的核心概念及联系,详细讲解了核心算法原理和具体操作步骤,并辅以Python代码。随后分析了相关的数学模型和公式,通过具体例子加深理解。在项目实战
- 贪心算法实战陷阱,看似简单却坑杀无数开发者的4类问题(附避坑指南)
大熊计算机
算法实战贪心算法ios算法
贪心算法以其简洁高效的特点得到开发者喜爱。它每一步都做出局部最优选择,期望通过一系列局部最优解达到全局最优。然而,正是这种"短视"特性,让无数开发者在实际应用中踩坑无数。根据StackOverflow调查,贪心算法错误占算法类错误的32%,其中75%发生在有3年以上经验的开发者身上。贪心算法适用的场景必须满足两个关键性质:贪心选择性质:局部最优解能构成全局最优解最优子结构:问题的最优解包含子问题的
- 在Simulink中搭建一个基于自适应控制策略的温度控制系统
amy_mhd
算法matlabsimulink
目录准备工作实现步骤1.创建Simulink项目2.温度控制系统的建模3.添加参考输入信号4.设计自适应控制器5.模拟传感器与执行器6.连接各模块并配置仿真参数7.运行仿真并测试结论自适应控制器在温度控制系统中的应用展示了如何通过调整控制参数来应对系统动态变化或外部干扰,以维持期望的温度设定点。Simulink提供了强大的环境来设计、仿真和测试这种类型的控制系统。下面将详细介绍如何使用Simuli
- NLPIR智能语义:大数据精准挖掘是信息化发展趋势
weixin_33778544
大数据数据库人工智能
随着信息技术的高速发展、数据库管理系统的广泛应用,人们积累的数据量急剧增长,大量的信息给人们带来方便的同时,也带来了诸如:信息过量难以消化,信息真假难以辨识,信息安全难以保证,信息形式不一致难以统一处理等问题。如何从海量的数据中提取有用的知识成为当务之急。数据挖掘就是为顺应这种需要应运而生发展起来的数据处理技术。数据挖掘就是对观测到的数据集进行分析,目的是发现未知的关系和以数据拥有者可以理解并对其
- KNN算法数字识别实战:训练集、测试集与代码实现
Aurora曙光
本文还有配套的精品资源,点击获取简介:KNN算法,作为一种经典的监督学习方法,特别适用于分类和回归问题,在模式识别和数据挖掘中应用广泛。本文通过构建数字识别任务的训练集和测试集,并提供完整的代码实现,向读者展示如何使用KNN算法进行数字识别。文章详细解释了K值选择、数据预处理、距离计算、最近邻选择、类别决定以及模型评估等关键步骤,并强调了KNN在大数据集中的效率问题。1.KNN算法概述与在数字识别
- 程序员转行为什么这么难,2025年强烈建议程序员转行大模型试试_程序员转行容易吗
AI学习不迷路
javaAI大模型AI大模型人工智能程序员转行
在“大龄程序员的未来在何方”这篇文章里比较乐观地介绍了程序员保持竞争力的几个方向,但现实依然是残酷的:很多人将不得不离开软件开发工作,转型去从事其他职业。当你要这么做时,就会感慨:想不到一切竟如此艰难!你不禁会想起李白老先生的诗:噫吁嚱,危乎高哉!蜀道之难,难于上青天!那么,为什么会这么难呢?真有这么难吗?我们这次就从下面几方面扒一扒难在哪里:路径依赖成本缺乏技能他人的期望然后我们再来看看,在千难
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。