- SpringSecurity——如何获取当前登录用户的信息
代码代码快快显灵
springsecurityjava开发语言SpringSecurity
目录1.直接注入Principal2.直接注入Authentication3.注入UsernamePasswordAuthenticationToken4.通过SecurityContextHolder获取5.使用自定义工具方法总结如何获取更多的用户信息自定义用户实体类如何忽略某些字段(不返回前端)以及规范日期格式登录成功后的处理:在SpringSecurity中,当前登录用户的信息实际上都存储在
- Operating System Concepts读书笔记——操作系统本质、类型与发展【1】
墨汁儿
操作系统
文章目录一、操作系统基础概念1.操作系统功能2.计算机系统组成部分3.用户角度对操作系统的需求4.系统角度二、各类型操作系统1.大型机系统1.1批处理系统1.2多道程序系统1.3分时系统2.桌面系统3.多处理器系统4.分布式系统4.1客户机-服务器系统4.2对等系统5.集群系统6.实时系统7.手持系统三、其它1.功能迁移2.计算环境2.1传统计算2.2基于Web的计算2.3嵌入式计算一、操作系统基
- VisionPro实战之传感器识别
视觉王小
VisionPro实战visionpro机器视觉c#
目录1.案例要求2.实现思路1.先进行图片格式转换,不然可能格式不匹配2.进行模板匹配,仔细观察之后发现可以从左侧凹陷的地方入手,再进行定位3.找出四条线段4.进行距离的测量5.编写脚本或者使用CogCreateGraphicLabelTool工具输出数据3.具体操作1.我们先创建一个CogImageConvertTool工具,进行图片转码操作。2.创建一个模板匹配工具CogPMAlignTool
- “统计视角看世界”专栏阅读引导
赛卡
统计视角看世界信息可视化数据分析
根据文章主题和逻辑关系,我为您设计以下阅读引导方案:1.六西格玛基础2.帕累托图3.直方图4.散点图基础5.散点图高阶6.多变量可视化7.密度图进阶8.回归分析配套文字说明:入门基石(必读)《1.六西格玛遇上Python》→方法论总纲,建议优先精读基础三剑客(可并行)├─《2.帕累托图》→重点数据排序与决策├─《3.直方图》→数据分布核心工具└─《4.散点图》→数据探索第一视角高阶应用链(递进学习
- 第6章:Dockerfile最佳实践:多阶段构建与镜像优化
DogDog_Shuai
docker容器运维
第6章:Dockerfile最佳实践:多阶段构建与镜像优化作者:DogDog_Shuai阅读时间:约30分钟难度:中级目录1.引言2.Dockerfile基础3.多阶段构建4.镜像优化技术5.最佳实践指南6.总结1.引言Dockerfile是构建Docker镜
- HTML5!进击2025web蓝桥杯复习之路
Deepsleep.
html5前端html
#HTML5全面解析##目录1.[HTML5简介](#1-html5-简介)2.[基本标签](#2-基本标签)3.[新特性](#3-新特性)4.[本地存储](#4-本地存储)5.[总结](#5-总结)---##1.HTML5简介HTML5是HTML的第五个主要版本,2014年由W3C正式发布。主要特性包括:-语义化标签-多媒体支持-图形绘制(Canvas/SVG)-本地存储能力-WebWorker
- YOLOV8多模态(可见光+红外光,基于Ultralytics官方代码实现)
@M_J_Y@
目标检测YOLO计算机视觉目标检测python
YOLOV8多模态(可见光+红外光,基于Ultralytics官方代码实现)各位读者麻烦给个star或者fork,求求了。YOLOV8双分支模型架构图YOLOV8多模态目标检测前言:环境配置要求1.数据集DroneVehicle数据集(可见光+热红外)2.数据集文件格式(labeles:YOLO格式)3.权重文件下载4.配置模型yaml文件和数据集yaml文件5.训练6.测试7.打印模型信息8.o
- 基于STM32单片机的智能清扫小车清扫机器人
CC呢
单片机stm32机器人
功能描述STM32单片机+循迹+避障+蓝牙控制+温度采集+声光报警+按键调节+OLED显示+风扇吸尘1.STM32单片机为控制核心2.通过ds18b20传感器测量环境温度3.OLED显示屏显示模式及测量的信息;4.通过红外循迹传感器可以实现小车沿黑线进行循迹清扫5.通过两路红外光电传感器进行避障,可以实现全屋随意清扫6.蓝牙通信,可以通过手机公共APP(蓝牙串口调试助手)实现控制小车的前进方向,遥
- Linux------Redis(软件安装,Linux下和Windows下),NoSQL(简单了解)
.墨迹.
Linuxredis大数据java
文章目录NoSql1.历史1.单机MySql2.Memcached(缓存)+MySql+垂直拆分(读写分离)3.分库分表+水平拆分+MySql集群4.如今最近的年代5.为什么要使用NoSQL2.什么是NoSQL1.NOSQL2.特点3.3v+3高3.NoSQL的四大分类1.kv键值对:2.文档型数据库(bson和json一样):3.列存储数据库:4.图关系型数据库Redis1.初始redis1.简
- Java并发实战——CountDownLatch优化商品详情页数据加载
1加1等于
Java并发java开发语言多线程
本文将结合电商场景比如优化商品详情页数据加载,深入探讨CountDownLatch的工作原理及实际应用。本文目录1.简介2.商品详情页数据加载优化实战3.CountDownLatch的优势4.其他应用场景5.使用误区1.简介CountDownLatch是Java并发包java.util.concurrent中的一个同步工具类。允许一个或多个线程等待,直到其他一组线程完成一系列操作。CountDow
- 微服务即时通讯系统的实现(客户端)----(2)
Smile丶凉轩
项目微服务架构云原生
目录1.将protobuf引入项目当中2.前后端交互接口定义2.1核心PB类2.2HTTP接口定义2.3websocket接口定义3.核心数据结构和PB之间的转换4.设计数据中心DataCenter类5.网络通信5.1定义NetClient类5.2引入HTTP5.3引入websocket6.小结7.搭建测试服务器7.1创建项目7.2服务器引入http7.3服务器引入websocket7.4服务器引
- Python使用minIO上传下载
身似山河挺脊梁
python
前提VSCode+Python3.9minIO有Python的例子1.python生成临时文件2.写入一些数据3.上传到minIO4.获取分享出连接5.发出通知#创建一个客户端minioClient=Minio(endpoint='xx',access_key='xx',secret_key='xx',secure=False)#生成文件名current_datetime=datetime.dat
- 异步编程中的并发编程优化
AI天才研究院
架构师必知必会系列自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录1.简介2.基本概念术语说明什么是异步编程?为什么要异步编程?浅谈异步编程模型基于事件驱动的模型基于消息队列的模型基于协程的模型为什么要进行并发优化?3.基本算法原理和具体操作步骤1.串行执行2.并行执行3.任务分片4.超时重试5.异步回调6.消息队列7.缓存8.异步框架9.模型选择4.具体代码实例和解释说明模块划分1.串行执行2.并行执行3.任务分片4.超时重试5.异步回调6.消息队列7
- 数据结构之链表(单链表)
Dust-Chasing
数据结构链表c语言
目录一、链表的概念二、链表的分类三、单链表的实现1.创建新的节点2.打印链表3.链表的头插和尾插尾插:要注意第一次插入时链表为空的情况。头插:4.单链表的头删和尾删尾删:注意链表中只有一个元素的情况。且要保存尾节点的前一个节点。头删:5.单链表的查找一、链表的概念链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表实际上就像一列火车一样,每一个
- Windows10本地部署Dify+Xinference
橘长长长
AI相关aidifyxinferenceglm4
目录前言一、安装必要项1.安装Docker和AnaConda2.安装Xinference3.通过Xinference部署本地glm4-chat-1m4.验证glm4-chat-1m是否部署完成5.安装Dify三、Dify中配置大模型1.浏览器输入http://localhost:80启动Dify页面2.随便注册账户登录3.配置Xinference四、运行Dify1.设置系统推理模型2.对话窗口验证
- Docker之安装与配置
雨五夜
Dockerdocker容器运维
Docker之安装与配置一、Docker环境配置1.基本配置2.镜像加速3.网络配置4.数据持久化5.优化建议6.常见问题与解决方案7.补充工具二、Docker配置本地仓库指南1.拉取Registry镜像2.启动本地仓库3.配置Docker客户端Linux/macOSWindows4.推送镜像到本地仓库标记镜像推送镜像5.推送镜像到本地仓库6.管理本地仓库7.优化与安全性8.常见问题一、Docke
- 前端性能优化-知识点
甲亿
前端性能优化
Web性能优化意义1.减少整体加载时间:减小文件体积、减少HTTP请求、使用预加载。2.使网站尽快可用:仅加载首屏内容,其他内容根据需要进行懒加载。3.平滑和交互性:使用CSS替代JS动画、减少UI重绘。4.加载表现形式:使用加载动画、进度条、骨架屏等过渡信息,让用户感觉到页面加载更快。5.性能监测:性能指标、性能测试、性能监控持续优化等Web性能指标RAIL性能模型Response(响应):快速
- 一文讲清楚深度学习和机器学习
平凡而伟大.
机器学习人工智能深度学习机器学习人工智能
目录1.定义机器学习(MachineLearning,ML)深度学习(DeepLearning,DL)2.工作原理机器学习深度学习3.应用场景机器学习深度学习4.主要区别5.为什么选择深度学习?6.总结深度学习和机器学习是人工智能(AI)领域中两个密切相关但有所区别的概念。要清楚地解释它们之间的关系,我们可以从定义、工作原理、应用场景以及两者的主要区别等方面进行探讨。1.定义机器学习(Machin
- 回归模型评价指标——衡量预测能力
Tang–t
回归数据挖掘人工智能机器学习python
目录一、指标说明1.均方误差(MeanSquaredError,MSE)2.均方根误差(RootMeanSquaredError,RMSE)3.平均绝对误差(MeanAbsoluteError,MAE)4.决定系数(CoefficientofDetermination,R²)5.解释方差(ExplainedVariance,EV)6.最大误差(MaximumError)二、代码一、指标说明回归模型
- 第十八章:模板的多态力量_《C++ Templates》notes
郭涤生
c/c++c++开发语言笔记
模板的多态力量一、动态多态vs静态多态二、奇异递归模板模式(CRTP)三、策略模式(编译期策略选择)关键要点总结第一部分:多选题(10题)第二部分:设计题(5题)答案与详解多选题答案:设计题参考答案1.编译期策略选择器2.类型安全访问者模式3.概念约束数学库4.编译期工厂模式5.静态多态容器测试说明一、动态多态vs静态多态核心概念:动态多态:基于虚函数和继承体系,函数调用在运行时决定(通过虚函数表
- Cursor怎样设置中文
dkgee
vscode
要将Cursor软件设置为中文,可以按照以下步骤进行操作:1.打开Cursor软件:首先,启动Cursor软件。2.打开命令面板:按下键盘组合键`Ctrl+Shift+P`,这将打开命令面板。3.输入语言配置命令:在命令面板的搜索框中输入`ConfigureDisplayLanguage`,然后按下回车键。4.选择中文:在弹出的选项中选择中文(Chinese),系统会提示您重启软件以应用更改。5.
- conda将python低版本环境升级到高版本
dkgee
condapython开发语言
conda将python低版本环境3.7.16升级到高版本3.81.激活你的Conda环境2.升级Python版本3.验证升级4.处理依赖问题5.测试环境注意事项可以将Conda环境中的Python版本从3.7.16升级到3.8。以下是具体步骤:1.激活你的Conda环境首先,你需要激活你想要升级Python版本的环境。假设你的环境名为myenv,你可以使用以下命令激活它:condaactivat
- 11.网络编程的基础知识
就很对
网络linux
11.网络编程的基础知识**1.OSI模型与TCP/IP模型****2.IP地址分类****3.Socket编程****4.TCP三次握手与四次挥手****5.常用网络测试工具****6.练习与作业****7.总结**1.OSI模型与TCP/IP模型OSI模型(开放系统互联模型):7层结构:应用层:为网络用户提供各种服务(如HTTP、FTP)。表示层:数据加密解密、压缩解压缩。会话层:管理进程会话
- 5.进程基本概念
就很对
java服务器linux
5.进程基本概念**1.进程的基本概念****2.进程与程序的区别****3.进程的状态****4.进程调度****5.进程相关命令****6.进程创建与管理****7.进程的应用场景****8.练习与作业****9.进程的地址空间****10.进程的分类****11.进程的并发与并行****12.总结**1.进程的基本概念进程:进程是程序执行的过程,操作系统会为其分配内存资源和CPU调度。PCB
- 深入解析Flink Kafka Connector的分布式流数据采集架构与底层实现
数据与算法架构提升之路
#Flinkflinkkafkaconector源码
目录1.FlinkKafka连接器的分布式流采集架构1.1架构组成1.2分布式流模型2.数据分区分配策略3.为什么重写序列化和偏移量管理3.1与Flink分布式架构集成3.2与Flink检查点机制集成同时承接多级并行架构3.3OffsetsInitializer与细粒度偏移量控制3.4与Flink的Source接口统一4.版本兼容性管理5.有界流处理支持5.1实现原理5.2API使用示例5.3多种
- 第8章:Docker数据持久化与卷管理
DogDog_Shuai
dockereureka容器
第8章:Docker数据持久化与卷管理作者:DogDog_Shuai阅读时间:约25分钟难度:中级目录1.引言2.Docker数据持久化概述3.Docker卷管理4.数据卷容器5.绑定挂载6.临时文件系统
- 【第1章>第6节】CMAC小脑模型神经网络的理论学习与MATLAB仿真
fpga和matlab
#第1章·神经网络学习matlabCMAC小脑模型神经网络人工智能
目录1.使用软件和版本2.CMAC小脑模型神经网络概述2.1CMAC网络结构2.2CMAC地址映射2.3学习过程3.CMAC网络的MATLAB编程实现4.分辨率,重叠度,学习率对CMAC网络的训练性能影响分析4.1分辨率4.2重叠度4.3学习率5.视频操作步骤演示欢迎订阅FPGA/MATLAB/Simulink系列教程《★教程1:matlab入门100例》《★教程2:fpga入门100例》《★教程
- MacOS常用命令(不断更新)
没有感情的cv攻城狮
macos
MacOS常用命令1.查询命令查询目录中的内容:ls查询所在目录位置:pwd2.切换所在目录:cd3.文件处理命令创建文件:touch创建目录:mkdir删除空目录:rmdir删除文件或目录:rm复制命令:cp剪切或改名命令:mv3.搜索命令进程搜索4.压缩和解压tar.gz格式5.杀死进程1.查询命令查询目录中的内容:lsls[选项][文件或目录]选项:-a显示所有文件,包括隐藏文件-l显示详细
- OpenAI API - Streaming(流) 的概念与基本使用
田园里的猫
OpenAIAPI人工智能chatgptpythonnode.js
前言此篇文章旨在通过对OpenAIAPI中Streaming(流)概念的介绍和示例,来帮助大家更好的理解和使用Streaming(流)这个功能,我之所以把Streaming(流)拿出来单独写一篇,是因为Streaming(流)方式的开发,能让我们对返回结果有更多的操作空间更多的创意空间,让我们产品有更好的体验目录1.基本概念2.主要在哪些API中使用3.流的工作原理4.基本使用示例5.应用场景示例
- [代码规范]1_良好的命名规范能减轻工作负担
啾啾大学习
编程通用代码规范Java命名规范命名规范长命名方案
欢迎来到啾啾的博客,一个致力于构建完善的Java程序员知识体系的博客,记录学习的点滴,分享工作的思考、实用的技巧,偶尔分享一些杂谈。欢迎评论交流,感谢您的阅读。目录引言命名——提炼含义减少注释类名命名接口与实现类的命名方法命名的最佳实践1.方法名的结构2.参数与返回值的隐含3.避免缩写4.逻辑与副作用的体现5.条件判断方法长命名处理——实战答疑处理方法1.利用上下文环境简化名称2.使用领域术语或缩
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。