海量数据中寻找中位数

题目:在一个文件中有 10G 个整数,乱序排列,要求找出中位数。内存限制为 2G。只写出思路即可(内存限制为 2G的意思就是,可以使用2G的空间来运行程序,而不考虑这台机器上的其他软件的占用内存)。


方法一: 在平常的数据中,如果数据量不是很大的情况下,可以先考虑排序,然后再进行查找,但是数据量大就不能这么来了。但是可以考虑外部排序,同样可以达到效果。

方法二:使用堆的思想。查找中位数,也就是找出中间最大的数字,总共10G的数据,查找第5G大的数据,创建一个1G的大顶堆,遍历一遍这个10G的数据,找出前1G大的数据,在这个大顶堆中找出最小的值,这个最小的值就是这10G数据中第1G大的元素,然后利用这个元素在创建大顶堆,比这个元素小的才能进堆,那么就创建了从1G到2G的元素,这么一来,就找到了第2G大的元素,利用第2G大的元素就可以找到第5G大的元素,这么一来就可以找到中位数了。


分析: 既然要找中位数,很简单就是排序的想法。那么基于字节的桶排序是一个可行的方法

思想:将整形的每1byte作为一个关键字,也就是说一个整形可以拆成4个keys,而且最高位的keys越大,整数越大。如果高位keys相同,则比较次高位的keys。整个比较过程类似于字符串的字典序。

第一步:把10G整数每2G读入一次内存,然后一次遍历这536,870,912个数据。每个数据用位运算">>"取出最高8位(31-24)。这8bits(0-255)最多表示255个桶,那么可以根据8bit的值来确定丢入第几个桶。最后把每个桶写入一个磁盘文件中,同时在内存中统计每个桶内数据的数量,自然这个数量只需要255个整形空间即可。

代价:(1) 10G数据依次读入内存的IO代价(这个是无法避免的,CPU不能直接在磁盘上运算)。(2)在内存中遍历536,870,912个数据,这是一个O(n)的线性时间复杂度。(3)把255个桶写会到255个磁盘文件空间中,这个代价是额外的,也就是多付出一倍的10G数据转移的时间。

第二步:根据内存中255个桶内的数量,计算中位数在第几个桶中。很显然,2,684,354,560个数中位数是第1,342,177,280个。假设前127个桶的数据量相加,发现少于1,342,177,280,把第128个桶数据量加上,大于1,342,177,280。说明,中位数必在磁盘的第128个桶中。而且在这个桶的第1,342,177,280-N(0-127)个数位上。N(0-127)表示前127个桶的数据量之和。然后把第128个文件中的整数读入内存。(平均而言,每个文件的大小估计在10G/128=80M左右,当然也不一定,但是超过2G的可能性很小)。

代价:(1)循环计算255个桶中的数据量累加,需要O(M)的代价,其中m<255。(2)读入一个大概80M左右文件大小的IO代价。

注意,变态的情况下,这个需要读入的第128号文件仍然大于2G,那么整个读入仍然可以按照第一步分批来进行读取。

第三步:继续以内存中的整数的次高8bit进行桶排序(23-16)。过程和第一步相同,也是255个桶。

第四步:一直下去,直到最低字节(7-0bit)的桶排序结束。我相信这个时候完全可以在内存中使用一次快排就可以了。

 

 

整个过程的时间复杂度在O(n)的线性级别上(没有任何循环嵌套)。但主要时间消耗在第一步的第二次内存-磁盘数据交换上,即10G数据分255个文件写回磁盘上。一般而言,如果第二步过后,内存可以容纳下存在中位数的某一个文件的话,直接快排就可以了。关于快排的效率,可以看看我博客中的数据

你可能感兴趣的:(面试集锦)