python 画图 例子

Python画图主要用到matplotlib这个库。具体来说是pylab和pyplot这两个子库。这两个库可以满足基本的画图需求,而条形图,散点图等特殊图,下面再单独具体介绍。

首先给出pylab神器镇文:pylab.rcParams.update(params)。这个函数几乎可以调节图的一切属性,包括但不限于:坐标范围,axes标签字号大小,xtick,ytick标签字号,图线宽,legend字号等。

具体参数参看官方文档:http://matplotlib.org/users/customizing.html

首先给出一个Python3画图的例子。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import  matplotlib.pyplot as plt
import  matplotlib.pylab as pylab
import  scipy.io
import  numpy as np
params = {
     'axes.labelsize' '35' ,        
     'xtick.labelsize' : '27' ,
     'ytick.labelsize' : '27' ,
     'lines.linewidth' : 2  ,
     'legend.fontsize' '27' ,
     'figure.figsize'    '12, 9'     # set figure size
}
pylab.rcParams.update(params)             #set figure parameter
#line_styles=['ro-','b^-','gs-','ro--','b^--','gs--']  #set line style
 
 
 
         
#We give the coordinate date directly to give an example.
x1  =  [ - 20 , - 15 , - 10 , - 5 , 0 , 0 , 5 , 10 , 15 , 20 ]
y1  =  [ 0 , 0.04 , 0.1 , 0.21 , 0.39 , 0.74 , 0.78 , 0.80 , 0.82 , 0.85 ]
y2  =  [ 0 , 0.014 , 0.03 , 0.16 , 0.37 , 0.78 , 0.81 , 0.83 , 0.86 , 0.92 ]
y3  =  [ 0 , 0.001 , 0.02 , 0.14 , 0.34 , 0.77 , 0.82 , 0.85 , 0.90 , 0.96 ]
y4  =  [ 0 , 0 , 0.02 , 0.12 , 0.32 , 0.77 , 0.83 , 0.87 , 0.93 , 0.98 ]
y5  =  [ 0 , 0 , 0.02 , 0.11 , 0.32 , 0.77 , 0.82 , 0.90 , 0.95 , 1 ]
 
 
plt.plot(x1,y1, 'bo-' ,label = 'm=2, p=10%' ,markersize = 20 # in 'bo-', b is blue, o is O marker, - is solid line and so on
plt.plot(x1,y2, 'gv-' ,label = 'm=4, p=10%' ,markersize = 20 )
plt.plot(x1,y3, 'ys-' ,label = 'm=6, p=10%' ,markersize = 20 )
plt.plot(x1,y4, 'ch-' ,label = 'm=8, p=10%' ,markersize = 20 )
plt.plot(x1,y5, 'mD-' ,label = 'm=10, p=10%' ,markersize = 20 )
 
 
fig1  =  plt.figure( 1 )
axes  =  plt.subplot( 111 )   
#axes = plt.gca()
axes.set_yticks([ 0.1 , 0.2 , 0.3 , 0.4 , 0.5 , 0.6 , 0.7 , 0.8 , 0.9 , 1.0 ]) 
axes.grid( True )   # add grid
 
plt.legend(loc = "lower right" )   #set legend location
plt.ylabel( 'Percentage' )    # set ystick label
plt.xlabel( 'Difference' )   # set xstck label
 
plt.savefig( 'D:\\commonNeighbors_CDF_snapshots.eps' ,dpi  =  1000 ,bbox_inches = 'tight' )
plt.show()

显示效果如下:

 python 画图 例子_第1张图片

代码没什么好说的,这里只说一下plt.subplot(111)这个函数。

plt.subplot(111)和plt.subplot(1,1,1)是等价的。意思是将区域分成1行1列,当前画的是第一个图(排序由行至列)。

plt.subplot(211)意思就是将区域分成2行1列,当前画的是第一个图(第一行,第一列)。以此类推,只要不超过10,逗号就可省去。

 

python画条形图。代码如下。

复制代码
import scipy.io
import numpy as np
import matplotlib.pylab as pylab
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
params={
    'axes.labelsize': '35',
    'xtick.labelsize':'27',
    'ytick.labelsize':'27',
    'lines.linewidth':2 ,
    'legend.fontsize': '27',
    'figure.figsize'   : '24, 9'
}
pylab.rcParams.update(params)


y1 = [9.79,7.25,7.24,4.78,4.20]
y2 = [5.88,4.55,4.25,3.78,3.92]
y3 = [4.69,4.04,3.84,3.85,4.0]
y4 = [4.45,3.96,3.82,3.80,3.79]
y5 = [3.82,3.89,3.89,3.78,3.77]



ind = np.arange(5)                # the x locations for the groups
width = 0.15
plt.bar(ind,y1,width,color = 'blue',label = 'm=2')  
plt.bar(ind+width,y2,width,color = 'g',label = 'm=4') # ind+width adjusts the left start location of the bar.
plt.bar(ind+2*width,y3,width,color = 'c',label = 'm=6')
plt.bar(ind+3*width,y4,width,color = 'r',label = 'm=8')
plt.bar(ind+4*width,y5,width,color = 'm',label = 'm=10')
plt.xticks(np.arange(5) + 2.5*width, ('10%','15%','20%','25%','30%'))

plt.xlabel('Sample percentage')
plt.ylabel('Error rate')

fmt = '%.0f%%' # Format you want the ticks, e.g. '40%'
xticks = mtick.FormatStrFormatter(fmt)   
# Set the formatter
axes = plt.gca()   # get current axes
axes.yaxis.set_major_formatter(xticks) # set % format to ystick.
axes.grid(True)
plt.legend(loc="upper right")
plt.savefig('D:\\errorRate.eps', format='eps',dpi = 1000,bbox_inches='tight')

plt.show()
复制代码

结果如下:

 

 python 画图 例子_第2张图片

 

画散点图,主要是scatter这个函数,其他类似。

画网络图,要用到networkx这个库,下面给出一个实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import  networkx as nx
import  pylab as plt
=  nx.Graph()
g.add_edge( 1 , 2 ,weight  =  4 )
g.add_edge( 1 , 3 ,weight  =  7 )
g.add_edge( 1 , 4 ,weight  =  8 )
g.add_edge( 1 , 5 ,weight  =  3 )
g.add_edge( 1 , 9 ,weight  =  3
 
g.add_edge( 1 , 6 ,weight  =  6 )
g.add_edge( 6 , 7 ,weight  =  7 )
g.add_edge( 6 , 8 ,weight  =  7 )  
 
g.add_edge( 6 , 9 ,weight  =  6
g.add_edge( 9 , 10 ,weight  =  7
g.add_edge( 9 , 11 ,weight  =  6
 
 
 
fixed_pos  =  { 1 :( 1 , 1 ), 2 :( 0.7 , 2.2 ), 3 :( 0 , 1.8 ), 4 :( 1.6 , 2.3 ), 5 :( 2 , 0.8 ), 6 :( - 0.6 , - 0.6 ), 7 :( - 1.3 , 0.8 ),  8 :( - 1.5 , - 1 ),  9 :( 0.5 , - 1.5 ),  10 :( 1.7 , - 0.8 ),  11 :( 1.5 , - 2.3 )}  #set fixed layout location
 
 
 
#pos=nx.spring_layout(g) # or you can use other layout set in the module
nx.draw_networkx_nodes(g,pos  =  fixed_pos,nodelist = [ 1 , 2 , 3 , 4 , 5 ],
node_color  =  'g' ,node_size  =  600 )
nx.draw_networkx_edges(g,pos  =  fixed_pos,edgelist = [( 1 , 2 ),( 1 , 3 ),( 1 , 4 ),( 1 , 5 ),( 1 , 9 )],edge_color = 'g' ,width  =  [ 4.0 , 4.0 , 4.0 , 4.0 , 4.0 ],label  =  [ 1 , 2 , 3 , 4 , 5 ],node_size  =  600 )
 
 
nx.draw_networkx_nodes(g,pos  =  fixed_pos,nodelist = [ 6 , 7 , 8 ],
node_color  =  'r' ,node_size  =  600 )
nx.draw_networkx_edges(g,pos  =  fixed_pos,edgelist = [( 6 , 7 ),( 6 , 8 ),( 1 , 6 )],width  =  [ 4.0 , 4.0 , 4.0 ],edge_color = 'r' ,node_size  =  600 )
 
nx.draw_networkx_nodes(g,pos  =  fixed_pos,nodelist = [ 9 , 10 , 11 ],
node_color  =  'b' ,node_size  =  600 )
nx.draw_networkx_edges(g,pos  =  fixed_pos,edgelist = [( 6 , 9 ),( 9 , 10 ),( 9 , 11 )],width  =  [ 4.0 , 4.0 , 4.0 ],edge_color = 'b' ,node_size  =  600 )
 
 
plt.text(fixed_pos[ 1 ][ 0 ],fixed_pos[ 1 ][ 1 ] + 0.2 , s  =  '1' ,fontsize  =  40 )
plt.text(fixed_pos[ 2 ][ 0 ],fixed_pos[ 2 ][ 1 ] + 0.2 , s  =  '2' ,fontsize  =  40 )
plt.text(fixed_pos[ 3 ][ 0 ],fixed_pos[ 3 ][ 1 ] + 0.2 , s  =  '3' ,fontsize  =  40 )
plt.text(fixed_pos[ 4 ][ 0 ],fixed_pos[ 4 ][ 1 ] + 0.2 , s  =  '4' ,fontsize  =  40 )
plt.text(fixed_pos[ 5 ][ 0 ],fixed_pos[ 5 ][ 1 ] + 0.2 , s  =  '5' ,fontsize  =  40 )
plt.text(fixed_pos[ 6 ][ 0 ],fixed_pos[ 6 ][ 1 ] + 0.2 , s  =  '6' ,fontsize  =  40 )
plt.text(fixed_pos[ 7 ][ 0 ],fixed_pos[ 7 ][ 1 ] + 0.2 , s  =  '7' ,fontsize  =  40 )
plt.text(fixed_pos[ 8 ][ 0 ],fixed_pos[ 8 ][ 1 ] + 0.2 , s  =  '8' ,fontsize  =  40 )
plt.text(fixed_pos[ 9 ][ 0 ],fixed_pos[ 9 ][ 1 ] + 0.2 , s  =  '9' ,fontsize  =  40 )
plt.text(fixed_pos[ 10 ][ 0 ],fixed_pos[ 10 ][ 1 ] + 0.2 , s  =  '10' ,fontsize  =  40 )
plt.text(fixed_pos[ 11 ][ 0 ],fixed_pos[ 11 ][ 1 ] + 0.2 , s  =  '11' ,fontsize  =  40 )
 
 
 
plt.show()

结果如下:

python 画图 例子_第3张图片

你可能感兴趣的:(python)