- 基于大模型的胆囊结石全流程预测与诊疗系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、系统架构设计(一)数据采集与预处理模块(二)大模型核心算法模块(三)应用层功能模块三、全流程系统流程图四、术前阶段详细方案(一)患者信息采集与整合(二)胆囊结石风险预测(三)手术方案制定辅助(四)麻醉方案规划五、术中阶段详细方案(一)实时数据监测与传输(二)手术进程智能辅助六、术后阶段详细方案(一)术后恢复情况预测(二)并发症风险预测(三)护理方案调整(四)康复指导七、并发症风险预
- AI摄像头动捕:精准量化八段锦动作质量,赋能传统功法习练
在追求动作标准度的竞技体育、舞蹈教学或运动康复领域,如何科学、客观、高效地评估动作质量一直是核心挑战。如今,AI摄像头动捕技术的成熟,正为这些领域带来突破性的解决方案,尤其在需要高度专注与准确性的八段锦、太极拳等传统健身功法领域中展现出巨大潜力。AI摄像头动捕系统,通过部署多组高帧率RGB摄像头,在空间中构建一个精密的三维捕捉场域。这种无穿戴动捕(或称无标记点动捕)的方式,让用户无需任何设备束缚人
- 基于大模型的短暂性脑缺血发作(TIA)全流程预测与诊疗辅助系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、系统核心目标二、系统架构模块三、实验验证证据链系统架构流程图关键技术创新点一、系统核心目标构建多模态数据融合的TIA预测-干预-管理闭环,覆盖术前预警、术中决策、术后康复全周期二、系统架构模块1.术前预测模块高危人群筛查模型输入:电子健康记录(EHR)、基因数据、可穿戴设备实时监测特征工程:血压波动模式、颈动脉斑块稳定性评分TIA发作概率预测72小时预警模型(LSTM+Transforme
- 基于大模型的心力衰竭预测与干预全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录一、引言二、系统概述三、术前阶段(一)患者信息采集与预处理(二)大模型预测心力衰竭风险(三)手术方案制定辅助(四)麻醉方案规划四、术中阶段(一)实时数据监测与传输(二)大模型术中决策支持五、术后阶段(一)术后病情监测与评估(二)并发症风险预测与防控(三)术后护理计划生成六、健康教育与指导(一)个性化教育内容生成(二)康复随访与远程指导七、统计分析与技术验证(一)系统性能评估指标(二)数据分割与
- 老年综合实训室功能:重塑老年健康服务教育实践体系
凯禾瑞华_实训室建设
实训室建设大数据人工智能vrar虚拟现实unity
一、老年综合实训室的教育价值随着老年人口数量的增加和对健康服务需求的多元化,社会需要具备综合能力的老年健康服务人才。老年综合实训室具备多功能集成的特点,能够涵盖老年生活照料、健康护理、心理慰藉、康复训练等多个领域的实践教学。在老年综合实训室中,学生可以接触到不同类型的老年健康服务场景,锻炼多方面的能力,从而成为适应社会需求的复合型人才,这对于提升老年健康服务教育的质量和效果具有重要意义。点击获取实
- 基于大模型预测原发性醛固酮增多症的综合技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、引言二、技术方案概述三、术前阶段(一)数据采集与预处理(二)疾病诊断与分型预测(三)并发症风险预测四、术中阶段(一)实时数据监测与整合(二)手术决策支持(三)麻醉方案动态优化五、术后阶段(一)康复进度监测与预测(二)并发症监测与干预(三)术后护理指导六、统计分析与技术验证(一)模型性能评估指标体系(二)对比研究与临床实效分析七、实验验证证据(一)回顾性病例研究(二)前瞻性临床试验八、健康教
- 基于大模型预测肾囊肿的技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、引言二、技术方案概述(一)数据收集与整理(二)大模型构建与训练(三)术前预测与方案制定(四)术中决策支持(五)术后管理与预测(六)并发症风险预测与防控(七)健康教育与指导三、技术方案流程图四、统计分析与技术验证方法(一)模型性能评估指标(二)对比实验设计(三)交叉验证与外部验证五、实验验证证据(一)回顾性病例分析(二)前瞻性临床试验六、健康教育与指导方案细化(一)饮食指导(二)运动康复(三
- 从0开始学习R语言--Day26--因果推断
很多时候我们在探讨数据的相关性问题时,很容易会忽略到底是数据本身的特点还是真的是因为特征的区分导致的不同,从而误以为是特征起的效果比较大。这就好比测试一款新药是否真的能治病,假如吃药的患者康复的更快,那到底是因为药物本身的效果好,还是因为患者本身更健康,平时有控制饮食合理作息与运动,从而在患病后更快地凭借自身免疫力战胜病毒。这需要我们意识到对照试验还需要人为地补足某些条件,也就是探讨是否真的是X导
- 基于大模型预测急性横贯性脊髓炎的综合技术方案研究报告大纲
LCG元
大模型医疗研究-方案大纲方案大纲
目录一、引言二、技术方案总体架构三、术前预测与决策四、术中监测与决策支持五、术后护理与康复指导六、统计分析与技术验证七、实验验证与证据支持八、健康教育与指导九、结论与展望一、引言(一)研究背景急性横贯性脊髓炎的临床现状与挑战阐述急性横贯性脊髓炎的发病率、致残率以及对患者生活质量的严重影响,强调准确预测和精准治疗的重要性。大模型技术在医疗领域的应用前景简述大模型在医学影像分析、疾病诊断与预测等方面的
- 基于大模型预测的视神经脊髓炎技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲
目录一、引言(一)研究背景(二)研究目的与意义(三)大模型在医疗领域的应用现状二、术前评估与预测(一)数据采集与预处理(二)大模型构建与训练(三)术前风险评估与预测三、术中监测与决策支持(一)实时数据采集与传输(二)术中决策支持系统四、术后管理与康复(一)术后早期预警与监测(二)康复效果预测与个性化康复方案制定五、并发症风险预测与防控(一)并发症类型与风险因素分析(二)并发症风险预测模型构建与验证
- 基于大模型的脑出血全流程预测系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲
目录一、引言二、系统概述三、系统架构(一)数据采集与预处理层(二)模型训练与优化层(三)预测与决策支持层(四)数据管理与分析层(五)用户交互与应用层四、术前预测(一)数据采集(二)数据预处理(三)脑出血风险预测模型(四)手术方案制定(五)麻醉方案推荐五、术中监测与决策(一)数据采集(二)数据预处理(三)实时病情监测模型(四)手术策略调整建议六、术后护理与康复(一)数据采集(二)数据预处理(三)并发
- 寻疗微擎开源生态下的智慧医疗服务
小程序
寻疗系统是基于微擎开源生态开发的垂直领域医疗服务解决方案,专为医院、诊所、康养机构、健康服务平台设计。依托微擎系统的PHP开发框架与模块化能力,实现“医患对接-在线问诊-康复管理-资源整合”的全流程数字化,助力医疗服务机构快速搭建线上服务平台,提升诊疗效率,优化患者就医体验。寻疗详细介绍:https://s.w7.cc/module-33494.html核心功能:微擎生态加持,全场景医疗服务赋能多
- 榕壹云医疗服务系统:基于ThinkPHP+MySQL+UniApp的多门店医疗预约小程序解决方案
老李不敲代码
uni-app小程序mysql软件需求
在数字化浪潮下,传统医疗服务行业正面临效率提升与客户体验优化的双重挑战。针对口腔、美容、诊所、中医馆、专科医院及康复护理等需要预约或诊断服务的行业,我们开发了一款基于ThinkPHP+MySQL+UniApp的多门店服务预约小程序——榕壹云医疗服务系统。该系统通过模块化设计与开源架构,为医疗机构提供高效、灵活的管理工具,助力数字化转型。一、项目背景:解决医疗行业管理痛点随着消费者对便捷服务的需求增
- 蓝桥杯康复训练 Day4 (前缀和)(树状数组)(线段树)
ooold_six
2022蓝桥杯java算法
昨天没状态摆了一天,今天复习一下各种区间问题前缀和常规遍历区间求和复杂度O(n)单点修改复杂度O(1)前缀和区间求和复杂度O(1)单点修改复杂度O(n)前缀和数组中每个值覆盖的是从开始到该点整个区间的和值求i~j的区间和值可以通过s[j]-s[i-1]计算可以扩展成二维三维的前缀和在单点修改时需要对所有覆盖该点的值进行修改在对区间求和复杂度要求高时使用蓝桥杯–前缀和1树状数组对比前缀和复杂度前缀和
- 医疗机器人中的AI技术:手术精度与康复效果的提升
人工智能教程
人工智能transformer深度学习神经网络机器学习大数据机器人
在现代医疗领域,人工智能(AI)技术与医疗机器人的融合正在深刻改变医疗服务的模式和质量。从手术室的精准操作到康复中心的个性化治疗,AI技术为医疗机器人注入了强大的智能动力,显著提升了手术精度和康复效果。关注VX公众号【学长论文指导】发送暗号9领取一、AI技术在手术机器人中的应用手术机器人是医疗机器人领域的重要分支,其核心目标是通过高精度的机械操作和智能决策,辅助医生完成复杂手术。AI技术在手术机器
- 【仿生机器人系统设计】涉及到的伦理与安全问题
DFminer
机器人安全
随着材料科学、人工智能与生物工程学的融合突破,仿生机器人正从科幻走向现实。它们被寄予厚望——在医疗康复、老年照护、极端环境作业甚至社交陪伴等领域释放巨大价值。然而,当机器无限趋近于“生命体”,其设计过程中潜伏的伦理与安全迷宫便成为无法回避的核心挑战,这直接关乎技术能否真正服务于人。一、伦理困境:在“像人”与“是人”之间隐私与数据黑洞:问题:为实现自然交互,仿生机器人需搭载强大的环境感知(视觉、听觉
- 算法训练营Day01-数组Part01
shikinamiask
算法leetcode职场和发展
DAY01题目:704.二分查找-力扣(LeetCode)27.移除元素-力扣(LeetCode)977.有序数组的平方-力扣(LeetCode)704、二分查找704.二分查找-力扣(LeetCode)秒了,真秒了。问:为什么这么快?答:做过了。熟稔于心,无需多言。康复训练第一题,熟练一些vector的用法。classSolution{public:intsearch(vector&nums,i
- 基于大模型的颅前窝底脑膜瘤预测与治疗技术方案
LCG元
大模型医疗研究-技术方向技术方案深度学习人工智能机器学习
目录技术方案概述一、核心算法实现1.多模态数据融合算法(伪代码)2.并发症风险预测模型(伪代码)二、系统模块流程图1.数据采集模块2.预测与决策模块三、系统集成方案1.系统集成流程图2.系统部署拓扑图四、关键技术验证1.模型性能对比表2.典型病例验证流程五、实施保障体系技术方案概述本方案基于深度学习大模型构建颅前窝底脑膜瘤全周期诊疗系统,包含术前精准预测、术中动态决策、术后康复管理三大模块。通过多
- 康复评定试题库-康复评定的题库
答案资料
大数据
第一章总论一、名词解释:1.康复功能评定:是用客观的、量化的方法有效和准确地评定残疾者功能障碍的种类、性质、部位、范围、严重程度和预后。包括躯体功能、精神状态、言语功能和社会功能等方面的评定。2.初期评定:是首次对患者进行的评定。目的是发现和确定患者的功能状况和存在的问题,判断障碍程度、康复潜力和预后,为制定康复治疗计划提供可靠的依据。3.中期评定:是指患者经过一段时间治疗后进行的再次评定。评定的
- 基于大模型预测的膝内翻畸形诊疗全流程研究报告
LCG元
围术期危险因子预测模型研究人工智能算法
目录一、引言1.1研究背景与意义1.2国内外研究现状1.3研究目的与方法二、大模型预测原理及数据基础2.1大模型介绍2.2数据收集与预处理2.3模型训练与验证三、术前预测与准备3.1术前病情评估指标3.2大模型预测结果分析3.3术前检查项目及意义3.4基于预测的手术方案制定3.5麻醉方案选择四、术中应用与操作4.1手术流程与关键步骤4.2大模型辅助术中决策4.3实时监测与风险应对五、术后评估与康复
- 大模型在先天性肌性斜颈诊疗全流程中的应用研究报告
LCG元
围术期危险因子预测模型研究人工智能算法
目录一、引言1.1研究背景与目的1.2先天性肌性斜颈概述二、大模型在术前的预测应用2.1病情评估2.2手术风险预测三、大模型在术中的应用3.1实时手术导航与辅助决策3.2应对突发状况四、大模型对并发症风险的预测4.1常见并发症分析4.2大模型预测原理与方法五、基于大模型预测制定治疗方案5.1手术方案定制5.2麻醉方案选择六、术后护理与大模型的作用6.1伤口护理指导6.2康复训练计划制定七、统计分析
- 上肢康复机器人设计与临床应用研究
2301_78600126
机械设计制造及其自动化机器人
引言脑卒中、脊髓损伤等神经系统疾病导致的上肢运动功能障碍,严重影响了患者的生活质量。传统康复治疗依赖治疗师手动辅助训练,存在效率低、量化难、人力成本高等问题。上肢康复机器人通过精准的运动控制与生物反馈机制,为实现高效、标准化的康复训练提供了技术解决方案。本文从临床需求出发,系统阐述上肢康复机器人的设计方法,并探讨其关键技术突破方向。一、康复医学需求与设计目标1.1临床医学要求适应症范围:需覆盖Br
- 基于大模型的全面惊厥性癫痫持续状态技术方案
LCG元
大模型医疗研究-技术方向技术方案
目录一、数据收集与预处理系统1.1多模态数据集成模块1.2数据预处理流程二、大模型构建与训练系统2.1模型架构设计2.2训练流程三、术前评估系统3.1癫痫发作风险预测3.2手术可行性评估流程四、术中决策支持系统4.1实时监测数据处理4.2麻醉方案优化流程五、术后护理系统5.1短期预后预测模型5.2康复管理流程六、技术验证方案6.1对照试验设计七、健康教育系统7.1患者自我监测指导八、核心算法伪代码
- 基于大模型的脑出血智能诊疗与康复技术方案
LCG元
大模型医疗研究-技术方向人工智能深度学习机器学习算法
目录一、术前阶段1.1数据采集与预处理系统伪代码实现流程图1.2特征提取与选择模块伪代码实现流程图1.3大模型风险评估系统伪代码实现流程图二、术中阶段2.1智能手术规划系统伪代码实现流程图2.2麻醉智能监控系统伪代码实现流程图三、术后阶段3.1并发症预测系统伪代码片段3.2康复训练系统流程图四、技术验证体系4.1统计分析模块伪代码实现4.2实验验证框架流程图一、术前阶段1.1数据采集与预处理系统伪
- 大模型赋能围术期危重症预测系统的深度剖析与实践研究
LCG元
围术期危险因子预测模型研究围术期人工智能
一、引言1.1研究背景与意义围术期是指从患者决定接受手术治疗开始,到手术治疗直至基本康复的全过程,包括术前、术中和术后三个阶段。在围术期,患者面临着诸多风险,如出血、感染、器官功能障碍等,这些风险可能导致危重症的发生,严重威胁患者的生命健康。据统计,全球每年有数以百万计的患者在围术期发生危重症,其死亡率和致残率居高不下。在中国,随着人口老龄化的加剧和手术量的不断增加,围术期危重症的防治形势也日益严
- Captiks无线惯性动捕及步态分析系统:高频采样+400g超宽动态量程,赋能医疗康复、竞技体育、工业检测三大领域,运动轨迹零盲区追踪!”
欣佰特cnbestec
CaptiksMOVIT步态分析系统运动研究分析
在运动科学与生物力学领域,精准捕捉人体运动数据是研究与应用的重要基础。传统光学动捕系统虽精度高,但存在环境依赖性强、操作复杂、成本高等局限。Captiks无线惯性动捕及步态分析系统采用先进传感器技术和无线传输,提供实时、准确的人体运动数据分析。其可穿戴设计让用户在多种环境中自由活动,摆脱了固定设备的局限。Movit系统不仅能测量步态时间、步幅和关节角度等关键参数,还支持全面的运动表现分析,适用于运
- 基于大模型预测围术期麻醉苏醒时间的技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲
目录一、引言(一)研究背景与意义(二)国内外研究现状二、术前阶段(一)数据收集与整理(二)数据预处理与特征工程(三)大模型训练与初步预测(四)术前风险评估与个性化准备三、术中阶段(一)实时数据监测与传输(二)数据动态更新与模型调整(三)术中决策支持与干预四、术后阶段(一)苏醒时间精准预测与评估(二)并发症风险预警与处理(三)术后护理与康复指导五、统计分析与技术验证(一)数据统计分析方法(二)技术验
- 手搓传染病模型(SQEIR)
Code_Verse
matlab数学建模传染病微分方程
在传染病防控研究中,准确刻画隔离措施对疫情传播的影响至关重要。SQEIR模型(易感者S-暴露者E-隔离暴露者\(Q_E\)-感染者I-隔离感染者\(Q_I\)-康复者R)通过引入隔离仓室,为分析防控策略提供了有力工具。图中的微分方程组清晰定义了各仓室的动态变化:\(\begin{align*}\frac{dS}{dt}&=-\betaSI\\\frac{dE}{dt}&=\betaSI-\alph
- 手搓传染病模型(SEIARW)
Code_Verse
传染病模型看这一个就够了!matlab数学建模传染病微分方程
在传染病传播的研究中,水传播途径是一个重要的考量因素。SEAIRW模型(易感者S-暴露者E-感染者I-无症状感染者A-康复者R-水中病原体W)综合考虑了人与人接触传播以及水传播的双重机制,为分析此类传染病提供了全面的框架。图中的微分方程组清晰地定义了各变量的动态变化:\(\begin{cases}\frac{dS}{dt}=-\betaS(I+kA)-\beta_wSW\\\frac{dE}{dt
- 手搓传染病模型(SIS)
Code_Verse
传染病模型看这一个就够了!数学建模matlab
先看模型开始手搓%模型参数N=21858000;%总人数I0=170;%初始感染人数S0=N-I0;%初始易感人数beta=1.1;%传染率gamma=0.25;%康复率num_days=160;%模拟天数%x(1):感染人群I,x(2):易感人群Sdxdt=@(t,x)[beta*x(1)*x(2)/N+gamma*x(1);-beta*x(1)*x(2)/N-gamma*x(1)];[t,y]
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源