- 服务器、群晖,飞牛NAS等部署Whisper ASR教程来啦!让我们的Nas轻松实现音频转文字服务!
xiaoqiangclub
群晖助手服务器whisper音视频ASR语音转文字实用教程
文章目录介绍演示环境服务器/群晖/飞牛NAS部署WhisperASR,语音识别soeasy!准备部署使用Python调用示例注意事项⚓️相关链接⚓️介绍最近有人私信我,有没有什么办法能在NAS上搞个语音识别服务,实现将语音或开会录音自动转成文字?那么今天我们就一起来看看如何在服务器或群晖/飞牛等Nas上部署一个语音转文字的服务,让我们的NAS瞬间变身“听译”大师!演示环境本文演示环境如下:群晖系统
- 小爱音箱结合xiaomusic实现尘封的NAS音乐不自由
wjcroom
日常小操作智能音箱智能音箱
xiaomusic地址前年下载了一批老歌,为了买U盘,从淘宝带来的资源.上传在NAS吃灰.今天拿出来,辅助小爱音箱,实现一下语音控制听歌不自由.打开群晖openwrt等家庭里常开的一个设备作为docker的容器.然后安装docker版的xiaomusic.项目资源中有介绍.此处需要注意的.a.docker在国内的使用,项目中的缓存,在我的群晖环境,总是不定期中断下载.这里需要指定docker的源到
- 芯科科技通过全新并发多协议SoC重新定义智能家居连接
电子科技圈
SiliconLabs智能家居边缘计算mcu物联网iot人工智能机器学习
MG26系列SoC现已全面供货,为开发人员提供最高性能和人工智能/机器学习功能致力于以安全、智能无线连接技术,建立更互联世界的全球领导厂商SiliconLabs(亦称“芯科科技”,NASDAQ:SLAB),日前宣布其MG26系列无线片上系统(SoC)现已通过芯科科技及其分销合作伙伴全面供货。作为业界迄今为止最先进、高性能的Matter和并发多协议解决方案,MG26SoC的闪存和RAM容量是芯科科技
- 从专利数据中提取IPC代码,构建共现矩阵(IPC共同出现在同一专利为1,否则为0),利用GCN提取特征,并进行链路预测以评估IPC之间的相似度概率
pk_xz123456
算法深度学习矩阵线性代数
要完成这个任务,你可以按照以下步骤进行:数据预处理:从专利数据中提取IPC代码,并构建共现矩阵。图卷积网络(GCN):使用GCN提取特征。链路预测:评估IPC之间的相似度概率。以下是一个Python示例代码,展示了如何完成上述任务:importnumpyasnpimportnetworkxasnximporttorchimporttorch.nnasnnimporttorch.nn.functio
- python保存字典到xml文件_Python将字典转换为XML的方法
weixin_39872123
问题你想使用一个Python字典存储数据,并将它转换成XML格式。解决方案尽管xml.etree.ElementTree库通常用来做解析工作,其实它也可以创建XML文档。例如,考虑如下这个函数:fromxml.etree.ElementTreeimportElementdefdict_to_xml(tag,d):'''Turnasimpledictofkey/valuepairsintoXML''
- 强化学习实践 openai gymnasium CartPole-v1 DQN算法实现
abstcol
强化学习深度学习机器学习神经网络
文章目录前言DQN简介环境简介任务实现说开来去我的Github实现:gym(GitHub)本篇博客主要是个人实现过程的主观感受,如果想要使用模型可以直接去GitHub仓库,注释完善且规范。觉得有用请给我点个star!前言最近在学习强化学习,大致过了一遍强化学习的数学原理(视频)。视频讲的很好,但是实践的部分总是感觉有点匮乏(毕竟解决gridworld方格世界(GitHub)的问题的很难给人特别大的
- pytorch 模型测试
小赖同学啊
人工智能pytorch人工智能python
在使用PyTorch进行模型测试时,一般包含加载测试数据、加载训练好的模型、进行推理以及评估模型性能等步骤。以下为你详细介绍每个步骤及对应的代码示例。1.导入必要的库importtorchimporttorch.nnasnnimporttorchvisionimporttorchvision.transformsastransforms2.加载测试数据假设我们使用的是CIFAR-10数据集作为示例
- 图像识别技术与应用课后总结(12)
一元钱面包
人工智能
全局平均池化(GlobalAveragePooling)1.导入库和设备配置importtorch.nnasnnimporttorch.nn.functionalasFdevice=torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")-importtorch.nnasnn:导入PyTorch的神经网络模块,用于构建神经网络层。-imp
- 【安路科技FPGA软件TangDynasty】避坑总结和心得
月薪不过亿
fpga开发科技
前面的话作为为数不多的几个“纯国产化”的FPGA芯片,安路科技的FPGA芯片在军工领域有着很大的号召力。平心而论,安路科技的FPGA只能说够用,在速度越来越快资源越来越丰富的FPGA领域,真正干大活,还得是别家,甚至很多场景下只能用xilinx家或者altera的,哦不,是AMD和INTEL家的。本文主要总结一下在使用安路FPGA以及安路TD软件这些年来踩过的坑、那些反直觉的使用体验以及一些设计心
- 面试基础--- Spring 事务传播机制底层实现原理
WeiLai1112
后端面试springjava爬虫后端架构分布式
深度解析Spring事务传播机制底层实现原理一、事务传播机制的本质与价值是否调用Transactional方法是否存在事务根据传播级别处理现有事务根据传播级别创建新事务挂起/加入/抛出异常等新建Connection/设置隔离级别等在分布式系统架构中,事务传播机制是保证业务一致性的核心机制。Spring通过TransactionInterceptor和TransactionAspectSupport
- 【深度学习·命运-27】NAS四部曲end-NASNet
华东算法王
深度学习·命运深度学习人工智能
NASNet(NeuralArchitectureSearchNetwork)是由GoogleBrain团队提出的另一种神经架构搜索(NAS)方法,它通过自动化搜索神经网络的结构,找到了具有竞争力的神经网络架构,尤其在计算机视觉任务(如图像分类)中表现非常优秀。NASNet是基于进化算法的架构搜索方法,与其他NAS方法相比,它具有更高的效率,并且能够生成更加优化的网络架构。1.NASNet的背景与
- WinNAS的远程访问对比飞牛NAS
DeepSeek+NAS
飞牛NASWinNAS内网穿透安卓NASAINAS
在数字化时代,NAS设备已成为个人和企业数据管理的核心。面对市面上众多的NAS解决方案,WinNAS以其卓越的远程访问能力脱颖而出,彻底打破了传统NAS的使用局限。与飞牛,群晖等其它NAS仅支持WebDAV协议的保守做法形成鲜明对比,WinNAS为用户提供了真正意义上的远程访问自由。WinNAS的远程访问功能突破了传统NAS的桎梏。通过先进的手机客户端,用户可以实现对WinNAS电脑任意端口的远程
- 【随笔笔记】将mysql数据迁移到群晖NAS
QTEASY量化交易
随笔笔记笔记mysql数据库
将mysql数据迁移到群晖NAS情况和问题前提条件方法1,使用管道方式传递数据方法2,导出数据为文件,复制到NAS上再导入情况和问题原本大量的金融数据保存在电脑本地硬盘的mysql数据库中,随着数据量越来越大,电脑的硬盘吃紧,正好把我的群晖NAS升级到了DS923+并且增加了4T的存储空间,可以使用Docker安装mysql并且存储空间不再是个问题,因此打算将电脑中的数据全部迁移到群晖NAS中。这
- tidb和mysql性能优化有哪些区别
大0马浓
tidbmysql
TiDB和MySQL在性能优化上的区别主要体现在架构设计、扩展方式、优化手段和适用场景等方面。以下是主要区别的总结:1.架构设计差异MySQL:单机架构(或主从复制架构),存储和计算耦合。-依赖本地磁盘或集中式存储(如SAN/NAS)。-优化集中在单机资源(CPU、内存、磁盘I/O)的合理利用。TiDB:-分布式架构,存储(TiKV)、计算(TiDBServer)、调度(PD)分离。-数据自动分片
- [论文阅读]DAMO-YOLO——实时目标检测设计报告
一朵小红花HH
知识蒸馏目标检测YOLO目标检测目标跟踪论文阅读人工智能
DAMO-YOLODAMO-YOLO:AReportonReal-TimeObjectDetectionDesign实时目标检测设计报告论文网址:DAMO-YOLO简读论文这篇论文介绍了一个名为DAMO-YOLO的新型目标检测方法,相比YOLO系列的其他方法有着更好的性能。该方法的优势来自于几项新技术:使用了MAE-NAS作为骨干网络,可以自动搜索出不同延迟预算下的优化网络结构。MAE-NAS被称
- Ubuntu系统下交叉编译nasm
linux运维交叉编译
一、交叉编译nasm1.下载源码下载nasm:https://www.nasm.us/pub/nasm/releasebuilds/下载并解压源码。wgethttps://www.nasm.us/pub/nasm/releasebuilds/2.16.03/nasm-2.16.03.tar.gztar-xvzfnasm-2.16.03.tar.gzcdnasm-2.16.03mkdirnasmbu
- NASA 宇航员太空惊魂 30 天!波音飞船 5 大致命漏洞曝光:美国航天帝国正在崩塌?...
思快奇
人工智能
【惊爆】原定8天的太空任务演变成生死拉锯战!当NASA宣布“星际客机”将提前两周返航时,全球目光突然聚焦:价值42亿美元的太空飞船为何沦为“星际牢笼”?波音与NASA的联合声明背后,一场动摇美国航天霸权的系统性危机正在爆发…第一章太空惊变72小时去年6月5日,那本应是一次充满荣耀与探索的太空之旅,星际客机载着两位精英宇航员冲天而起,冲破大气层,向着浩瀚宇宙进发。全世界都在期待着他们在太空中的新发现
- 线性回归s
三排扣
线性回归pytorch深度学习
1api的调用损失函数假设函数优化函数importtorchimporttorch.nnasnnimporttorch.optimasoptim#损失函数deftest1():#初始化损失函数对象criterion=nn.MSELoss()y_pread=torch.randn(3,5,requires_grad=True)y_test=torch.randn(3,5)#计算损失loss=crit
- Pytorch神经网络魔改之:模型融合 - 速通(1)
lczdyx
pytorch神经网络深度学习python人工智能
本文将以几种常见方法为例,介绍如何进行Pytorch神经网络的模型融合:1.子模型串联(SequentialConcatenation)在这个方法中,输入数据x首先通过FeatureExtractor(即:子模型1),处理后的结果再传递给Classifier(即:子模型2)。最后,返回Classifier的输出。这种方式允许将两个子模型串联起来,形成一个组合模型:importtorch.nnasn
- dnspod动态解析linux,NAS折腾记 篇一:五分钟搞定威联通DNSPOD动态域名解析-简单教程+问题解决...
芒果绵绵冰
dnspod动态解析linux
NAS折腾记篇一:五分钟搞定威联通DNSPOD动态域名解析-简单教程+问题解决2021-01-1321:04:4814点赞156收藏28评论新人值友一枚,第一次发贴,请大家多多支持!2020年双11,因为每天都会打开张大妈看看,经过太多值友PO文轮番轰炸,终于下手了一台威联通NAS。从一开始完全搞不清状况的新人小白(存储池,卷,威联通的太多术证让人傻傻分不清),到现在基本上把自己的NAS折腾得七七
- 编程参考 - Switch Case Range in GNU C Extensions
夜流冰
编程参考gnu
ExtensionstotheCLanguageFamilyCaseRanges(UsingtheGNUCompilerCollection(GCC))6.32CaseRangesYoucanspecifyarangeofconsecutivevaluesinasinglecaselabel,likethis:caselow...high:Thishasthesameeffectastheprop
- 使用 Vosk 实现语音识别
分发吧
语音识别xcode人工智能
在近两年里,如果说想要在本地部署离线语音识别模型,那么Whisper和FunASR肯定是首选项。所以为什么要使用Vosk呢?优势Vosk是一个离线开源语音识别工具包,它的优点在于:轻量:Vosk提供轻量级的模型(小于50MB大小),可以用于低功耗平台(例如Android、树莓派之类)多编程语言、多平台支持:Python、Java、Node.js、C#、C++、Rust、Go等多语种支持:支持二十多
- 2月27日全球科技信息差:技术浪潮下的信息博弈与应对策略
eqwaak0
信息差开发语言人工智能开源软件科技
第一章信息差的定义与科技行业的特殊性**信息差(InformationAsymmetry)是经济学中的核心概念,指交易双方因信息获取能力或时效性差异导致的不平等博弈。在科技领域,这种不对称性尤为显著,原因在于:技术迭代速度快:例如量子计算、人工智能模型(如DeepSeekR2)的研发进展往往由少数企业或机构主导,公众与普通投资者难以实时掌握动态。行业专业壁垒高:生物技术(如CRISPR基因编辑)和
- NetScaler Console 14.1 Build 43.50 - 集中管理 NetScaler
http
NetScalerConsole14.1Build43.50(ESXi,Hyper-V,KVM,Xen)FormerlyknownasNetScalerADM-集中管理NetScaler请访问原文链接:https://sysin.org/blog/netscaler-console-14/查看最新版。原创作品,转载请保留出处。作者主页:sysin.orgNetScalerConsole服务(以前称
- 《2025 年最新!5 步实现群晖 NAS 远程访问全攻略》
u010905359
公网助手网络
本文将以神卓NAS公网助手为核心工具,结合2025年最新技术,手把手教你5步完成远程访问配置!第一步:检查NAS系统与网络环境确保群晖DSM系统已升级至DSM7.3及以上版本(2025年最新兼容性优化)。登录NAS后台,进入「控制面板」→「网络」→「连接性」,确认设备已接入互联网。记录NAS的局域网IP地址(如192.168.1.100),后续步骤需使用。注意:若使用企业级路由器,
- hyper-v安装飞牛fnOS私有云出现循环安装解决笔记
无痕melody
服务器运维笔记
前言新出的飞牛nas系统想用虚拟机测试一下,安装过程没啥可说就新建虚拟机配置DVD的ISO引导,配置硬盘,常规系统的配置方法。用hyper-v安装完后发现重启后再次进入安装模式,虚拟DVD-ISO弹出会出现无法引导、虚拟机引导顺序调整依旧进入安装模式。最后才发现这个系统之支持IDE解决系统硬盘配置成IDE-0,DVD配置为IDE-1,正常解决
- sns.kdeplot报错:ValueError: could not convert string to float: ‘INN00001‘
爱挠静香的下巴
#报错解决matplotlibpython数据分析
报错说明今天使用sns.kdeplot报错:ValueError:couldnotconvertstringtofloat:'INN00001'报错代码importmatplotlib.pyplotaspltimportseabornassns%matplotlibinlineplt.figure(figsize=(16,
- pytorch基础 nn.embedding
yuweififi
pytorch人工智能nlp
nn.Embedding是PyTorch中的一个模块,用于创建嵌入层(embeddinglayer),它将离散的索引(例如词汇表中的单词索引)映射为固定大小的稠密向量。这是许多NLP模型(包括Transformer)中的基本组件。示例用法:importtorchimporttorch.nnasnn#定义一个嵌入层vocab_size=10000#词汇表大小embedding_dim=512#嵌入向
- 每日Attention学习23——KAN-Block
xiongxyowo
划水
模块出处[SPL25][link][code]KANSeeIntheDark模块名称Kolmogorov-ArnoldNetworkBlock(KAN-Block)模块作用用于vision的KAN结构模块结构模块代码importtorchimporttorch.nnasnnimporttorch.nn.functionalasFimportmathclassSwish(nn.Module):def
- 【解读】核密度图
dearr__
python开发语言
def:what核密度估计(KernelDensityEstimation,简称KDE)是一种用来估计随机变量概率密度函数的非参数方法实现:(库函数)howimportseabornassnsimportmatplotlib.pyplotasplt#使用Seaborn绘制KDE图sns.kdeplot(data,shade=True)#添加标签和标题plt.xlabel('Data')plt.yl
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟