- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- 第九课:大白话教你朴素贝叶斯
顽强卖力
机器学习-深度学习-神经网络算法python大数据数据分析
这节课咱们来聊聊朴素贝叶斯(NaiveBayes),这个算法名字听起来像是个“天真无邪的数学小天才”,但其实它是个超级实用的分类工具!我会用最接地气的方式,从定义讲到代码实战,保证你笑着学会,还能拿去忽悠朋友!一:朴素贝叶斯是啥?——当概率论遇上“天真”假设1.1定义:贝叶斯定理的“偷懒版”问题:你想判断一封邮件是不是垃圾邮件,或者一条评论是不是好评。贝叶斯定理(原版):[P(A|B)=\frac
- 贝叶斯算法:从概率推断到智能决策的基石
weixin_47233946
算法算法
##引言在人工智能与机器学习的蓬勃发展中,贝叶斯算法以其独特的概率推理方式和动态更新的特性,在垃圾邮件过滤、疾病诊断、推荐系统等关键领域展现出强大的应用价值。本文将从概率论基础出发,深入解析贝叶斯算法的核心思想及其实现方式,揭示这一统计学方法如何演变为现代智能系统的决策利器。---##一、贝叶斯定理:概率之门的钥匙###1.1基本公式表述贝叶斯定理的数学表达式揭示事件间的关联关系:$$P(A|B)
- 清风数学建模个人笔记--模糊综合评价
fvdj0
数学建模笔记
目录一、量二、分类三、模糊函数的三种表示方法四、应用:模糊综合评价(评判)一、量①确定性:经典数学(几何、代数)②不确定性:随机性(概率论、随机过程)灰性(灰色系统)模糊性(模糊数学)二、分类:偏小型:年轻、小、冷中间型:中年、中、暖偏大型:年老、大、热三、模糊函数的三种表示方法(1)模糊统计法(设计调查问卷,不推荐,主观性最弱)(2)借助已有的尺度(需要已有的指标,并能收集到数据)论域模糊集隶属
- 【西瓜书】机器学习(周志华)学习问题记录
_linyu__
基础知识机器学习周志华西瓜书
简述西瓜书的鼎鼎大名早有耳闻,于是毫无疑问买来入门。写此文章的时候刚要做完第二章的练习题。在看的时候有一些感慨:需要一定的数理基础,尤其是概率论的内容。但是如果没学过也不建议直接去啃概率论,只要把相关的部分看看即可。周老师默认我们能力很强,所以有些地方说得不够详细,仅靠此书无法理解,需要自己另行查阅。有一些疑似谬误的地方,但是我自己能力较差,又苦于没有人佐证,所以并不敢说周老师一定错了。在看的过程
- 数学中的泛函分析与算子理论
AI天才研究院
计算AI大模型应用入门实战与进阶ChatGPT实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍1.1数学的发展与泛函分析的产生数学作为一门科学,自古以来就在不断地发展和演变。从最初的算术、几何,到后来的微积分、线性代数,再到现代的拓扑学、概率论等,数学的研究领域不断扩展。泛函分析作为一门现代数学的分支,起源于20世纪初,它主要研究无限维空间中的函数和算子,为许多现代科学和工程问题提供了理论基础。1.2泛函分析与算子理论的关系泛函分析与算子理论密切相关。泛函分析主要研究无限维空间
- 【图像处理入门】8. 数学基础与优化:线性代数、概率与算法调优实战
小米玄戒Andrew
图像处理:从入门到专家图像处理线性代数算法python计算机视觉概率论算法调优
摘要图像处理的核心离不开数学工具的支撑。本文将深入解析线性代数、概率论在图像领域的应用,包括矩阵变换与图像几何操作的关系、噪声模型的数学描述,以及遗传算法、粒子群优化等智能算法在参数调优中的实践。通过理论结合代码案例,帮助读者掌握从数学原理到工程优化的完整链路。一、线性代数:图像变换的数学基石1.矩阵运算与图像几何变换在图像处理入门3中,我们通过仿射变换矩阵实现图像平移、旋转与缩放。其本质是线性代
- AI大模型从0到1记录学习 大模型技术之机器学习 day27-day60
Gsen2819
算法大模型人工智能人工智能学习机器学习
机器学习概述机器学习(MachineLearning,ML)主要研究计算机系统对于特定任务的性能,逐步进行改善的算法和统计模型。通过输入海量训练数据对模型进行训练,使模型掌握数据所蕴含的潜在规律,进而对新输入的数据进行准确的分类或预测。机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸优化、算法复杂度理论等多门学科。人工智能、机器学习与深度学习人工智能(AI)是计算机科学的一个广泛领域,
- 大数定律与中心极限定理:概率论的双子星
Algo-hx
概率论与数理统计概率论
目录引言5大数定律与中心极限定理5.1大数定律:频率的稳定性5.1.1辛钦大数定律定理内容5.1.2伯努利大数定律定理内容5.1.3切比雪夫大数定律定理内容对比总结表5.2中心极限定理:正态分布的普适性5.2.1独立同分布情形定理内容图释5.2.2李雅普诺夫定理定理内容核心思想图释5.2.3棣莫弗-拉普拉斯定理定理内容应用条件图释对比总结表5.3定理对比:LLNvsCLT引言当随机现象的个体行为无
- (十七)深度学习之线性代数:核心概念与应用解析
只有左边一个小酒窝
深度学习深度学习线性代数人工智能
1线性代数在深度学习中的定位1.1深度学习的数学基础支柱线性代数是深度学习的核心数学工具之一,与微积分、概率论共同构成深度学习的理论基础。深度学习本质上是对高维数据的处理与建模,而线性代数提供了描述和操作高维空间中数据与变换的语言和方法。1.2从数据表示到模型运算的桥梁数据结构化表示:深度学习处理的图像、文本、音频等数据,通常被转化为向量、矩阵或张量(多维数组)。例如:图像:RGB图像可表示为三维
- (详细介绍)什么是 Spherical Gaussian(球形高斯分布)
音程
数学数学
文章目录什么是SphericalGaussian?几何意义:为什么叫“球形”?特点总结:应用场景举例:✅示例代码(Python)相关概念对比:SphericalGaussian(球形高斯分布)是概率论与统计学中一个非常常见且重要的概念,尤其在机器学习、信号处理、模式识别等领域有广泛应用。什么是SphericalGaussian?SphericalGaussianDistribution(球形高斯分
- 贝叶斯原理:解锁不确定性的智慧钥匙(全网最详细)
富士达幸运星
贝叶斯原理人工智能机器学习
在浩瀚的统计学与概率论海洋中,贝叶斯原理如同一盏明灯,照亮了我们在不确定性中前行的道路。它不仅仅是一种计算方法,更是一种深刻的思维方式,让我们能够基于有限的信息和先验知识,对未知事件做出更加合理的预测和判断。本文将带您一窥贝叶斯原理的奥秘,探索它如何在各个领域发光发热。一、贝叶斯原理的起源与核心概念起源贝叶斯原理得名于18世纪的英国数学家托马斯·贝叶斯(ThomasBayes),尽管他本人并未直接
- 为什么计算机不用e进制,按道理说e进制难道不是最高效的吗?e进制理论上为何被认为信息编码更优,但实际却难以实现?
前端
在现代计算机科学中,二进制无疑是计算机体系结构的根基,这一选择深刻影响了计算机的设计、性能以及发展方向。然而,数字系统的底层进制理论却远远不止二进制一种可能性。从数学的角度来看,常用进制中有一个特殊的数——数学常数e(自然对数的底,约等于2.71828),它在无数数学和物理领域扮演着极其重要的角色。e的独特性质使得很多数学函数的表达变得简洁自然,且e在连续复利、概率论、信息论等领域都有着独特的优势
- 【概率论】正态分布的由来——从大一同学的视角出发
应有光
基础知识概率论机器学习
数学系大佬勿喷,本文以非数同学的视角出发0.启发与思考正态分布平时常常遇到,无论是在概率论中的“中心极限定理”,还是平时在学习ML中遇到的“高斯混合模型”,或者是在深度学习中,常常将一些数据假设为正态分布的情况。我们平时可能由于知到中心极限定理,因此默认正态分布是一个很好的分布。但是,这为什么不能是平均分布呢?二项分布呢?泊松分布?或者是其它抽样分布?接下来我们将简要探讨正态分布的由来:1.背景我
- 【概率论与数理统计】第二章 随机变量及其分布(1)
Arthur古德曼
概率论与数理统计概率论随机变量分布离散型连续型夏明亮
第二章随机变量及其分布第一章种学习了随机现象、随机试验、随机事件等概念,讨论了随机事件的关系、运算以及概率;且只考虑了个别事件下的频率问题。接下来,进一步第需要建立随机试验结果与实数的对应关系,这类似于函数的映射,我们称之为随机变量,以便使用高等数学的方法来研究随机试验。1离散型随机变量1.1随机变量的概念随机变量的数学定义:**定义1:**设EEE为随机试验,Ω\OmegaΩ为其样本空间,若对于
- 随机变量及其分布:概率论的量化核心
Algo-hx
概率论与数理统计概率论
标题引言2随机变量及其分布2.1随机变量定义与分类2.2离散型随机变量:概率质量函数(PMF)概率分布律性质经典分布4.**各分布之间的关系**2.3分布函数(CDF):统一描述工具定义性质离散型应用2.4连续型随机变量:概率密度函数(PDF)定义性质经典分布均匀分布指数分布正态分布2.5随机变量函数的分布问题:已知XXX分布,求Y=g(X)Y=g(X)Y=g(X)分布解法框架重要公式(当ggg严
- 詹森不等式(Jensen’s Inequality)——EM算法的基础
phoenix@Capricornus
模式识别中的数学问题机器学习
詹森不等式(Jensen’sInequality)是数学中一个非常重要的不等式,广泛应用于概率论、统计学、凸优化、信息论等领域。它基于凸函数和凹函数的性质。一、基本定义设函数fff是定义在区间III上的凸函数(convexfunction),且随机变量XXX的取值落在III内,期望存在,则有:E[f(X)]⩾f(E[X]){E}[f(X)]\geqslantf({E}[X])E[f(X)]⩾f(E
- 机器学习与深度学习16-概率论和统计学01
my_q
机器学习与深度学习机器学习深度学习概率论
目录前文回顾1.什么是概率论和统计学2.概率的基本概念3.什么是概率密度函数和累积分布函数4.均值、中位数与众数前文回顾上一篇文章地址:链接1.什么是概率论和统计学概率论和统计学是数学中重要的分支,用于研究随机事件和数据的分布、关联性以及不确定性。概率论是研究随机事件发生的可能性和规律的数学学科。它提供了一套工具和方法来描述和分析随机变量、随机过程以及他们之间的关系。概率论包括概率分布、随机变量、
- Python概率论
麻辣小兔喵
Pythonpython概率论机器学习
概率论是数学的一个分支,它研究随机事件的概率和统计规律。在Python中,有很多强大的概率统计库可以帮助我们进行概率计算和数据分析,比如NumPy、SciPy和Pandas等库。下面我将为您介绍一些基本的概率概念以及如何在Python中实现它们。1.概率的基本概念在概率论中,我们通常会用以下的符号表示:P(A):表示事件A发生的概率,其取值范围在[0,1]之间。P(A|B):表示在事件B发生的条件
- C++概率论算法详解:理论基础与实践应用
清言神力,创作奇迹。接受福利,做篇笔记。参考资料[0]概率论中均值、方差、标准差介绍及C++/OpenCV/Eigen的三种实现.https://blog.csdn.net/fengbingchun/article/details/73323475.[4]C++中的随机数及其在算法竞赛中的使用-博客园.https://www.cnblogs.com/cmy-blog/p/random.html.[
- 我2025上岸大模型就靠它了,冲击大厂大模型岗位!大模型学习路线(2025最新)从零基础入门到精通_大模型学习路线
大模型老炮
学习人工智能程序员Agent大模型教学知识库大模型
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。\1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcad
- 神仙级大模型教程分享,不用感谢,请叫我活雷锋!大模型 学习路线非常详细_大模型学习路线(2025最新)
程序员辣条
学习人工智能大模型产品经理智能体大模型教程AI大模型
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcade
- 最大似然估计(MLE)与最小二乘估计(LSE)的区别
江湖小妞
概率论
最大似然估计与最小二乘估计的区别标签(空格分隔):概率论与数理统计最小二乘估计对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小。设Q表示平方误差,Yi表示估计值,Ŷi表示观测值,即Q=∑ni=1(Yi−Ŷi)2最大似然估计对于最大似然估计来说,最合理的参数估计量应该使得从模型中抽取该n组样本的观测值的概率最大,也就是概率分布函数或者
- 概率论的基本概念
Mr.魏(魏先生)
概率论的起源与发展概率论产生于十六世纪十六世纪中叶,卡当在赌博时研究不输的方法1654年,德·美黑——“合理分配赌注问题”1657年,惠更斯——《论机会游戏的计算》1933年,柯尔莫哥洛夫——《概率论的基本概念》数理统计的历史1763年,贝叶斯贝叶斯方法1809年,高斯和勒让德——最小二乘法皮尔逊、戈赛特、费歇——频率曲线、多元分析、估计和方差分析概率论是数理统计学的基础,数理统计学是概率论的一种
- 【概率论基本概念01】点估计
无水先生
概率模型统计学模型概率论
一、说明关于概率和统计的学习,需要从根本上、原始概念中一点一点积累,这些基本概念的头绪特别多,一次性交待它们的面有困难,我们只能从点上入手,将点与点的关系连成面,最后完成系统学习的目的,这是一个长期任务。二、关于估计的基本概念2.1我们将学习哪些关于“估计”内容我们将主要指向如下学习内容:学习如何找到总体参数的最大似然估计量。学习如何找到总体参数的矩估计方法。学习如何检查估计量对于特定参数是否无偏
- 《算法导论(第4版)》阅读笔记:p1178-p1212
算法
《算法导论(第4版)》学习第25天,p1178-p1212总结,总计35页。一、技术总结1.AppendixC:CountingandProbability附录C介绍了计数理论(如:和规则,积规则,串,排列,组合,二项式系数,二项式界等),概率理论(如:样本空间,事件,概率论公理,离散概率分布,连续均匀概率分布,贝叶斯定理等),几何分布与二项分布,二项分布的尾部探究。第5章会时不时的涉及这些内容,
- matlab实现朴素贝叶斯可视化,模式识别(七):MATLAB 实现朴素贝叶斯分类器
哈哈哈哈哈哈哈哈鸽
本系列文章由云端暮雪编辑,转载请注明出处多谢合作!基础介绍今天介绍一种简单高效的分类器——朴素贝叶斯分类器(NaiveBayesClassifier)。相信学过概率论的同学对贝叶斯这个名字应该不会感到陌生,因为在概率论中有一条重要的公式,就是以贝叶斯命名的,这就是“贝叶斯公式”:贝叶斯分类器就是基于这条公式发展起来的,之所以这里还加上了朴素二字,是因为该分类器对各类的分布做了一个假设,即不同类的数
- C++二项式定理:原理、实现与应用
VU-zFaith870
数学c++二项式定理数学
背景鉴于复习,问了问清言二项式定理的应用…只好多找些资源…肝要死了…一、引言二项式定理是数学中一个基本定理,主要用于展开二项式的幂次。在C++编程中,理解并实现二项式定理及其拓展具有重要意义,可以解决组合数学、概率论、算法分析等多个领域的问题。本报告将详细介绍C++二项式定理的原理、实现方法及其拓展应用。二、二项式定理的基本原理二项式定理描述了如何展开(a+b)^n的形式,其中n为非负整数。展开式
- LLM笔记(五)概率论
Jerry3538
LLM学习笔记概率论人工智能
1.随机变量与概率分布:模型输出的基础在LLM中,随机变量最直观的体现就是模型预测的下一个token。每个时刻,模型都会输出一个概率分布,表示词汇表中每个token可能是"下一个词"的概率。直观理解想象模型在处理句子"我喜欢北京的"后需要预测下一个词。此时,模型会为词汇表中的每个候选token分配一个概率:“天安门”:0.3“故宫”:0.25“美食”:0.2“文化”:0.15其他词:0.1这个分布
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st