- 边缘计算物联网关如何优化数据处理流程-天拓四方
职业影评人
边缘计算物联网人工智能
在物联网技术日新月异的今天,数据的产生、传输与处理已成为推动行业智能化转型的关键。边缘计算物联网关,作为这一生态系统中的核心组件,正以其独特的优势,在数据处理效率、实时性、安全性及成本效益等方面展现出非凡的潜力。本文将聚焦于边缘计算物联网关如何优化数据处理流程,深入探讨其技术原理、应用优势及未来发展趋势。一、边缘计算物联网关概述边缘计算物联网关,简而言之,是位于物联网设备边缘,负责数据收集、初步处
- 酒厂生产信息化系统方案
liu854046222
技术解决方案大数据人工智能
一、背景目标白酒作为中国传统的高度酒精饮料,其生产过程复杂且历史悠久。随着消费者对高品质白酒的需求不断增长,以及食品安全和质量监管的日益严格,酒厂面临着提升产品品质、确保生产安全、提高生产效率和降低成本的多重挑战。为了满足市场需求,酒厂需要对原材料进行严格分析和追溯,优化生产流程,并通过数据收集和分析来持续改进生产工艺。目标:原材料优化:通过对原料的深入分析,选择最佳的原料组合,确保白酒的独特风味
- 大模型在2型糖尿病性酮症预测及临床方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能python深度学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点二、2型糖尿病性酮症相关理论基础2.12型糖尿病性酮症概述2.1.1定义与发病机制2.1.2临床表现与危害2.1.3诊断标准与鉴别诊断2.2大模型技术原理及在医疗领域的应用潜力2.2.1大模型的基本原理和特点2.2.2在医疗领域的应用现状和优势三、大模型在2型糖尿病性酮症术前风险预测的应用3.1数据收集与预处理3.1.1数据来源3.1.2数据清
- 网络爬虫:技术原理、应用场景与合法使用全攻略
程序小武
python爬虫入门爬虫网络
爬虫是什么?网络爬虫(WebScraping或WebCrawling)是一种通过自动化方式从网站上抓取公开数据的程序。它通过模拟用户在浏览器中浏览网页的过程,访问网页、提取信息,并将数据保存到本地系统中。爬虫技术广泛应用于搜索引擎、数据收集、市场分析、信息聚合等多个领域。爬虫能做什么?数据收集爬虫可以高效地从互联网上的大量网站收集信息。比如,抓取新闻网站上的文章内容、商品电商平台的价格与库存数据、
- 一文读懂 AI 模型训练流程
AI赋能
人工智能人工智能
一文读懂AI模型训练流程在当今数字化时代,AI技术发展得如火如荼,广泛应用于各个领域,而这背后离不开AI模型的训练。AI模型训练流程就像是一场精心策划的“智慧锻造之旅”,每一步都至关重要。今天,咱们就来深入了解一下这个神秘的过程。数据准备:夯实基础数据,堪称AI模型训练的“原材料”,其质量直接决定了最终模型的性能。这就好比建造一座高楼,只有用优质的砖块、钢筋等材料,才能让大楼稳固结实。数据收集我们
- 使用Python快速读取PDF中的表单数据
nuclear2011
PythonPDFpythonpdf
目录安装PythonPDF库Python读取PDF表单数据1、一次性读取多种PDF表单的数据2、读取特定PDF表单的数据PDF表单是常见的数据收集工具,用于收集用户或客户提供的信息。通过编程的方式读取PDF表单的数据可以准确获取用户信息,避免手动输入或转录,从而节省时间和劳动力,同时降低数据输入错误的风险。这篇文章将探讨如何使用Python快速读取PDF表单数据。安装PythonPDF库Pytho
- 基于大模型的颅前窝底脑膜瘤诊疗全流程研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究意义与创新点二、颅前窝底脑膜瘤概述2.1定义与分类2.2发病机制与病因2.3临床表现与症状三、大模型预测原理与方法3.1大模型介绍3.2数据收集与预处理3.3模型训练与验证四、术前预测与准备4.1肿瘤特征预测4.2手术风险预测4.3术前检查与评估4.4患者沟通与教育五、手术方案制定5.1手术入路选择5.2手术步骤规划5.3术中监测与应急
- 【机器学习笔记 Ⅱ】10 完整周期
机器学习的完整生命周期(End-to-EndPipeline)机器学习的完整周期涵盖从问题定义到模型部署的全过程,以下是系统化的步骤分解和关键要点:1.问题定义(ProblemDefinition)目标:明确业务需求与机器学习任务的匹配性。关键问题:这是分类、回归、聚类还是强化学习问题?成功的标准是什么?(如准确率>90%、降低10%成本)输出:项目目标文档(含评估指标)。2.数据收集(DataC
- SFT(监督微调)详解:零基础入门到精通,一篇详细的入门教程!
AGI大模型老王
人工智能程序员大模型学习AI大模型大模型微调SFT
文章目录具体步骤如下:应用场景优点举例步骤1:预训练模型的选择步骤2:数据收集与标注步骤3:数据预处理步骤4:数据集划分步骤5:加载预训练模型步骤6:数据编码步骤7:创建数据加载器步骤8:定义训练过程步骤9:模型评估步骤10:模型保存零基础入门AI大模型一、全套AGI大模型学习路线二、640套AI大模型报告合集三、AI大模型经典PDF籍四、AI大模型商业化落地方案学习计划:资料领取SFT(监督微调
- 产品经理-埋点分析文档(DRD) - AxureMost
AxureMost
NPDP产品经理开源知识库产品经理
埋点分析文档(DRD)-AxureMost数据埋点文档是产品、数据分析师和开发人员之间沟通的桥梁,用于明确需要收集哪些用户行为数据,以及如何收集这些数据。它详细记录了数据埋点的需求、规范和实施细节,确保数据收集的准确性和一致性。以下是数据埋点文档的定义、内容、作用以及规范的详细说明:定义数据埋点文档是一种技术文档,它详细描述了在产品中需要埋点的位置、事件类型、数据字段、统计逻辑等信息。它是产品需求
- 大模型在蛛网膜下腔出血预测与诊疗方案制定中的应用研究
目录一、引言1.1研究背景与意义1.2研究目的与创新点二、蛛网膜下腔出血概述2.1定义与分类2.2发病原因及危险因素2.3临床表现与诊断依据三、大模型技术原理与应用现状3.1大模型基本原理3.2在医疗领域的应用案例3.3应用于蛛网膜下腔出血预测的可行性分析四、大模型预测蛛网膜下腔出血的具体方案4.1术前风险预测4.1.1数据收集与预处理4.1.2模型构建与训练4.1.3预测指标与评估4.2术中情况
- 数据分析全流程:从收集到可视化的高效实战
晨曦543210
python
1.数据收集来源:数据库、API、传感器、日志文件、社交媒体、问卷调查等。工具:Python(requests、Scrapy)、SQL、Excel、Kafka(实时流数据)。2.数据清洗处理缺失、重复、错误或不一致的数据:缺失值:删除、填充(均值/中位数/众数)、插值或预测。异常值:使用箱线图、Z-score或IQR方法检测并处理。格式标准化:统一日期、单位、文本格式(如大小写、去除空格)。去重:
- 【python实用小脚本-127】基于 Python 的 Google 图片爬取工具:实现高效图片数据收集
Kyln.Wu
Pythonpython开发语言
引言在数据科学、机器学习和多媒体应用中,图片数据的收集是一个常见且重要的任务。Google图片是一个丰富的图片资源库,能够为各种项目提供大量的图片数据。本文将介绍一个基于Python的Google图片爬取工具,它能够自动化地从Google图片搜索结果中下载图片。该工具主要利用了Python的selenium、BeautifulSoup、urllib和argparse库,结合了网页自动化和数据解析技
- 基于大模型预测胸椎管狭窄诊疗全流程的研究报告
LCG元
围术期危险因子预测模型研究人工智能机器学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点1.3研究方法与数据来源二、胸椎管狭窄症概述2.1疾病定义与分类2.2病因与发病机制2.3流行病学特征三、大模型技术原理与应用现状3.1大模型基本原理3.2在医疗领域的应用案例3.3用于胸椎管狭窄预测的优势四、术前大模型预测4.1预测指标与数据收集4.2模型训练与验证4.3预测结果分析与临床意义五、基于预测的手术方案制定5.1手术方式选择依据5
- 基于大模型的慢性肾炎全流程预测与诊疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能机器学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点二、大模型技术原理与应用现状2.1大模型的基本原理与架构2.2医疗领域大模型的应用案例与成效三、慢性肾炎术前风险预测与手术方案制定3.1术前数据收集与特征提取3.2大模型预测术前慢性肾炎风险的方法3.3基于预测结果的手术方案制定四、慢性肾炎术中监测与风险应对4.1术中实时数据监测与分析4.2大模型在术中风险预测的应用4.3术中突发状况的应对策略
- Deepoc 大模型在无人机行业应用效果的方法
Deepoch
无人机人工智能科技语言模型ai
在无人机行业中,Deepoc大模型的潜力,提升其应用效果,可从以下多个关键方面着手:优化数据收集与处理多源数据采集扩充收集涵盖激光雷达点云、高精度地图、气象数据、无人机飞行传感器数据、拍摄的图像与视频等多源数据。例如,在城市环境应用里,除了获取建筑物的视觉图像数据,还收集周边交通流量、信号状态等数据,为Deepoc大模型提供丰富且全面的信息,助力其更精准地理解复杂环境。构建高质量数据集建立严格的数
- LangSmith 深度解析:构建企业级LLM应用的全生命周期平台
小赖同学啊
人工智能人工智能
LangSmith深度解析:构建企业级LLM应用的全生命周期平台LangSmith是LangChain生态系统中的核心组件,为LLM应用提供从开发到生产的全链路支持。以下是全面技术解析:一、核心架构设计应用层LangSmithSDK采集层处理引擎存储层分析层控制台监控告警1.分层架构详解层级组件功能技术栈应用层LLM应用业务逻辑执行LangChain,LangGraph采集层Tracer数据收集O
- UI前端与大数据的深度融合:打造智慧应用的新生态
前端开发与ui设计的老司机
ui前端大数据
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!在数字化转型的浪潮中,UI前端与大数据正逐渐成为推动智慧应用发展的核心力量。UI前端作为用户与应用程序交互的直接界面,负责提供直观、便捷且吸引人的用户体验;而大数据则凭借其强大的数据收集、分析和预测能力,为应用程序
- 基于大模型的急性结石性胆囊炎全流程预测与干预系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、术前阶段(一)疾病预测与诊断辅助(二)手术风险评估(三)手术方案制定辅助三、术中阶段(一)实时监测与风险预警(二)手术决策支持四、术后阶段(一)并发症风险预测(二)术后护理计划制定五、麻醉方案定制与优化(一)术前麻醉风险评估(二)术中麻醉管理六、统计分析与模型优化(一)数据收集与整理(二)模型性能评估(三)模型优化与更新七、实验验证与证据支持(一)回顾性队列研究(二)前瞻性随机对照
- 临床项目范围管理:确保项目聚焦与成功交付
qq_34062333
项目管理临床研究
一、核心目标1.1清晰定义项目边界1.1.1明确项目目标明确项目具体目标、可交付成果、研究活动、纳入/排除标准、数据收集范围等,为项目规划、执行、监控和控制奠定基础。1.1.2防止范围蔓延严格控制未经批准的变更,避免项目目标、活动或可交付成果超出最初约定,导致资源耗尽、时间延误或质量下降。1.1.3提供基线为进度、成本和质量管理提供基准,确保项目按计划推进。1.1.4促进沟通为所有利益相关者提供对
- 【Qt-windows】如何使用perfmon 具体分析windows serverR2的Qt程序CPU问题
漫步企鹅
QtWindows性能分析CPU性能
可以使用Windows自带的PerfMon(PerformanceMonitor)工具对运行在WindowsServerR2上的Qt程序进行详细的性能分析,尤其是CPU使用情况。以下是具体的操作步骤和建议:一、打开PerfMon工具按下Win+R打开运行窗口。输入perfmon并回车。二、创建自定义数据收集器集步骤如下:在左侧导航栏点击“数据收集器集”→“用户定义”。右键选择“新建”→“数据收集器
- 使用随机森林实现目标检测
司南锤
python基础学习AI随机森林
核心实现思路滑动窗口策略:在图像上滑动固定大小的窗口,对每个窗口进行分类多维特征提取:结合统计特征、纹理特征、边缘特征、形状特征等随机森林分类:训练二分类器判断窗口是否包含目标后处理优化:使用非极大值抑制减少重复检测特征工程的重要性LBP纹理特征:捕捉局部纹理模式灰度共生矩阵:描述纹理的统计特性边缘密度:反映目标边界信息形状描述符:圆形度、面积比等几何特征实际应用建议数据收集:收集大量正负样本进行
- OWASP Top 10 2025 / 2021
Hash the Hacker
网络安全
OWASP:TheOpenWorldwideApplicationSecurityProject.官网:https://owasp.org/about/OWASP每3~4年公布一次Top10ListforWebApplicationSecurityRisks.上一版本是2021年版。2025年版预计在上半年发布。当前状态为数据收集(从2024年12月至今),官网声明:以下为当前版本(2021版):
- Python与MediaPipe实现实时手势数字识别项目源码
盛艺小豆丁
本文还有配套的精品资源,点击获取简介:本项目基于Python语言,利用MediaPipe框架实现手势数字识别。MediaPipe提供多种计算机视觉解决方案,项目中重点应用手部追踪功能。通过收集手势数据、提取特征、选择模型、训练及优化,实现从视频流中实时识别手势并将其转换为数字的功能。项目包含数据收集、机器学习模型训练、实时应用等关键步骤,以及readme、HandTrackingModule、ma
- Python股票分析系统如何准确预测股价走势?有哪些实用的分析指标?
股票程序化交易接口
量化交易股票API接口Python股票量化交易pythonpython股票分析系统股价走势预测分析指标数据处理股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>Python股票分析系统的首要任务是收集和整合股票相关的数据。它可以从多个数据源,如财经网站、金融数据库等获取股价、成交量、公司财报等信息。通过编写程序,将这些分散的数据收集到一起,为后续的分析提供丰富的素材。这样全面的数据收集能够让
- 大模型在支气管哮喘慢性持续期全流程风险预测与治疗方案制定中的应用研究
LCG元
围术期危险因子预测模型研究算法人工智能机器学习
目录一、引言1.1研究背景与意义1.2研究目标与方法1.3研究创新点二、支气管哮喘概述2.1定义与发病机制2.2分类与临床表现2.3诊断标准与方法三、大模型技术原理与应用现状3.1大模型的基本原理3.2在医疗领域的应用案例分析3.3适用于支气管哮喘预测的大模型选择四、大模型在支气管哮喘术前预测中的应用4.1数据收集与预处理4.2模型训练与验证4.3预测指标与结果分析五、基于大模型预测的手术方案制定
- 数学建模-模糊性综合评价模型
viperrrrrrr
数学建模
前言hellohello~,这里是viperrrrrrr~,欢迎大家点赞关注收藏个人主页:viperrrrrrr的博客欢迎学习数学建模算法、大数据、前端等知识,让我们一起向目标进发!对于算法的都可以在上面数据结构的专栏进行学习哦~有问题可以写在评论区或者私信我哦~目录2.1指标体系构建2.2数据收集及预处理我将通过以下的问题求解来介绍模糊性综合评价:中医药是中国传统文化的重要组成部分,凝聚了中华民
- 大模型在支气管哮喘急性发作期预测及治疗方案制定中的应用研究
LCG元
围术期危险因子预测模型研究算法人工智能机器学习
目录一、引言1.1研究背景与意义1.2研究目标与方法1.3研究创新点二、支气管哮喘概述2.1定义与发病机制2.2分类与临床表现2.3诊断标准与方法三、大模型技术原理与应用现状3.1大模型的基本原理3.2在医疗领域的应用案例分析3.3适用于支气管哮喘预测的大模型选择四、大模型在支气管哮喘术前预测中的应用4.1数据收集与预处理4.2模型训练与验证4.3预测指标与结果分析五、基于大模型预测的手术方案制定
- Labelmatrix7.0:专业条码编辑软件深度解析
韦臻
本文还有配套的精品资源,点击获取简介:Labelmatrix7.0是一个为设计和打印条码标签而开发的专业软件,其直观易用的界面和强大的功能使其在多个行业中得到广泛应用。软件提供多种条码格式支持、丰富的图形和文本编辑功能以及高效的数据集成能力。用户还可以利用批量打印和预览功能以及便捷的模板管理和错误检查等特性,提升工作效率并降低运营成本。1.条码编辑软件简介条码编辑软件是自动化数据收集、管理和信息处
- 基于大模型预测十二指肠球部穿孔的多维度研究报告
LCG元
围术期危险因子预测模型研究算法人工智能机器学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点1.3国内外研究现状二、大模型技术原理与应用基础2.1大模型介绍2.2数据收集与预处理2.3模型训练与优化三、术前预测与准备3.1术前风险预测指标与模型构建3.2基于预测结果的手术方案制定3.3麻醉方案的选择与实施3.4术前患者评估与准备工作四、术中监测与决策支持4.1术中实时数据监测与分析4.2大模型在术中的应用场景与作用4.3手术过程中的风
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag