在linux下编写maven程序

1.在linux下安装eclipse-jee-kepler-SR2-linux-gtk.tar.gz
     并在桌面生成快捷方式
2.解压m2.tar.gz /root/
 
3.在maven程序/pom.xml添加引用,引用Hadoop,引用JDK
       
            org.apache.hadoop
            hadoop-common
            2.2.0
       
 
 
       
            org.apache.hadoop
            hadoop-mapreduce-client-core
            2.2.0
       
 
       
            jdk.tools
            jdk.tools
            1.7
            system
            ${JAVA_HOME}/lib/tools.jar
       
4.编写DataCount,在这里,我们需要编写Map/Reduce两个阶段,一个负责读取数据并将有用的数据写入字节流中
     Map阶段:1.接收数据。2.传递数据
        public static class DCMapper extends Mapper
       {
               @Override
               protected void map(LongWritable key, Text value, Context context)
                            throws IOException, InterruptedException {
                      //1.jie shou shu ju
                     String line = value.toString();
                     String[] fields = line.split( "\t" );
                     String telNo = fields[1];
                      long up = Long.parseLong(fields[8]);
                      long down = Long.parseLong(fields[9]);
                      //2.chuan di shu ju
                     DataBean bean = new DataBean(telNo, up, down);
                     context.write( new Text(telNo), bean);
              }
       }
     Reduce阶段
 
        public static class DCReducer extends Reducer
       {
               @Override
               protected void reduce(Text key, Iterable v2s,
                           Context context)
                            throws IOException, InterruptedException {
                      long up_sum = 0;
                      long down_sum = 0;
                      for (DataBean bean : v2s)
                     {
                           up_sum += bean.getUpPayLoad();
                           down_sum += bean.getDownPayLoad();
                     }
                     DataBean bean = new DataBean( "" , up_sum, down_sum);
                     context.write(key, bean);
              }
       }
5.Main方法,提供数据
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
              Configuration conf = new Configuration();
              Job job = Job.getInstance(conf);
              
              job.setJarByClass(DataCount. class );
              job.setMapperClass(DCMapper. class );
               // k2 v2 and k3 v3
               // job.setMapOutputKeyClass(Text.class);
               // job.setMapOutputValueClass(DataBean.class);
              FileInputFormat.setInputPaths(job, new Path(args[0]));
              
              job.setReducerClass(DCReducer. class );
              job.setOutputKeyClass(Text. class );
              job.setOutputValueClass(DataBean. class );
              FileOutputFormat.setOutputPath(job, new Path(args[1]));
              job.waitForCompletion( true );
       }
 
6.将程序打包成jar包,并上传到hdfs中,hadoop fs -put HTTP_20130313143750.dat /data.doc
7.运行hadoop程序,hadoop jar /root/examples.jar cn.itcast.hadoop.mr.dc.DataCount /data.doc /dataout
 
 
说明,如果期间报错,注意检查yarn进程是否启动。如没有启动yarn,需要启动yarn 
 
 
 
 

转载于:https://www.cnblogs.com/dulixiaoqiao/p/6985174.html

你可能感兴趣的:(java,大数据)