改进的SMO算法

S. S. Keerthi等人在Improvements to Platt’s SMO Algorithm for SVM Classifier Design一文中提出了对SMO算法的改进,纵观SMO算法,其核心是怎么选择每轮优化的两个拉格朗日乘子,标准的SMO算法是通过判断乘子是否违反原问题的KKT条件来选择待优化乘子的,由KKT条件:

clip_image002[4]

是否违反它,与这几个因素相关:拉格朗日乘子clip_image004[12] 、样本标记clip_image006[4] 、偏置 b的更新依赖于两个优化拉格朗日乘子,这就可能出现这种情况:拉格朗日乘子 clip_image004[13]已经能使目标函数达到最优,而SMO算法本身并不能确定当前由于两个优化拉格朗日乘子计算得到的b是否就是使目标函数达到最优的那个b,换句话说,对一些本来不违反KKT条件的点,由于上次迭代选择了不合适的,使得它们出现违反KKT条件的情况,导致后续出现一些耗时而无用的搜索,针对标准SMO的缺点,出现了以下改进方法。

         对于SVM的最优化问题的解:

clip_image008[4]

定义:clip_image010[4]

clip_image004[14]是拉格朗日乘子,通过解下面对偶问题,我们可以得到clip_image004[15]

clip_image013[4]

一旦clip_image004[16]确定,其他参数如:clip_image015[4]就很容易由KKT条件确定了,并且解是不唯一的,最后得拉格朗日函数如下:

clip_image017[4]

定义:

clip_image019[4]

则对偶问题的KKT条件如下:

clip_image021[4]

这个条件可以简化成下面三种情况:

1.clip_image023[4]

clip_image025[4]

2.clip_image027[4]

clip_image029[4]

3clip_image031[4]

clip_image033[4]

定义如下数集:I0 = {i: 0 < αi < C}; I1 ={iyi = 1,αi = 0}; I2 = {iyi = −1,αi C}; I3 = {iyi = 1,αi C};I4 = {i:yi = −1,αi = 0}.

可以看到以上的KKT条件成立当且仅当有一个clip_image035[4]使得下式成立:

clip_image037[4]

定义:

clip_image039[4]

当且仅当blow ≤ bup.成立时KKT条件成立。更进一步KKT条件可以写成如下形式:

clip_image041[4]

clip_image043[4]是一个正的容忍因子。


你可能感兴趣的:(机器学习)