1、structField
源码结构:
case class StructField( name: String, dataType: DataType, nullable: Boolean = true, metadata: Metadata = Metadata.empty) {}
-----A field inside a StructType
name:The name of this field.
dataType:The data type of this field.
nullable:Indicates if values of this field can be null values. //指示这个字段的指是否可以为空值
metadata:The metadata of this field. The metadata should be preserved during transformation if the content of the column is not modified, e.g, in selection.
//此字段的元数据。如果不修改列的内容,则在转换期间应保存元数据,例如。g,在选择。
一个结构体内部的 一个StructField就像一个SQL中的一个字段一样,它包含了這个字段的具体信息,可以看如下列子:
def schema_StructField()={ /** * StructField 是 一个 case class ,其中是否可以为空,默认是 true,初始元信息是为空 * 它是作为描述 StructType中的一个字段 */ val sf = new StructField("b",IntegerType) println(sf.name)//b println(sf.dataType)//IntegerType println(sf.nullable)//true println(sf.metadata)//{} }
2、structType
A StructType object can be constructed by
StructType(fields: Seq[StructField])
case class StructType(fields: Array[StructField]) extends DataType with Seq[StructField] {}
它是继承Seq的,也就是说Seq的操作,它都拥有,但是从形式上来说,每个元素是用 StructField包住的。
package Dataset import org.apache.spark.sql.types._ /** * Created by root on 9/21/16. */ object schemaAnalysis { //--------------------------------------------------StructType analysis--------------------------------------- val struct = StructType( StructField("a", IntegerType) :: StructField("b", LongType, false) :: StructField("c", BooleanType, false) :: Nil) def schema_StructType()={ /** * 一个scheme是 */ import org.apache.spark.sql.types.StructType val schemaTyped = new StructType() .add("a","int").add("b","string") schemaTyped.foreach(println) /** * StructField(a,IntegerType,true) * StructField(b,StringType,true) */ } def structType_extracted()={ // Extract a single StructField. val singleField_a = struct("a") println(singleField_a) //省却的清空下表示:可以为空的, //StructField(a,IntegerType,true) val singleField_b = struct("b") println(singleField_b) //StructField(b,LongType,false) //val nonExisting = struct("d") //println(nonExisting) //java.lang.IllegalArgumentException: Field "d" does not exist. // Extract multiple StructFields. Field names are provided in a set. // A StructType object will be returned. val twoFields = struct(Set("b", "c")) println(twoFields) //StructType(StructField(b,LongType,false), StructField(c,BooleanType,false)) // Any names without matching fields will be ignored. // For the case shown below, "d" will be ignored and // it is treated as struct(Set("b", "c")). val ignoreNonExisting = struct(Set("b", "c", "d")) println(ignoreNonExisting) // ignoreNonExisting: StructType = // StructType(List(StructField(b,LongType,false), StructField(c,BooleanType,false))) //值得注意的是:当没有存在的字段的时候,官方文档说:单个返回的是null,多个返回的是当没有那个字段 //但是实验的时候,报错---Field d does not exist //源码调用的是apply方法,确实还没有处理好这部分功能 //我是用的是spark2.0初始版本 } def structType_opration()={ /** * 源码:case class StructType(fields: Array[StructField]) extends DataType with Seq[StructField] { * 它是继承与Seq的,也就是说 Seq的操作,StructType都有 * 可以查看scala的Seq的操作:http://www.scala-lang.org/api/current/#scala.collection.Seq */ val tmpStruct = StructType(StructField("d", IntegerType)::Nil) //集合与集合的操作 println(struct++tmpStruct) // println(struct++:tmpStruct) //List(StructField(a,IntegerType,true), StructField(b,LongType,false), StructField(c,BooleanType,false), StructField(d,IntegerType,true)) //集合与元素的操作 println(struct :+ StructField("d", IntegerType)) //可以用add来进行 println(struct.add("e",IntegerType)) //StructType(StructField(a,IntegerType,true), StructField(b,LongType,false), StructField(c,BooleanType,false), StructField(e,IntegerType,true)) //head 部分的元素 println(struct.head) //StructField(a,IntegerType,true) //last 部分的元素 println(struct.last) //StructField(c,BooleanType,false) println(struct.apply("a")) //StructField(a,IntegerType,true) println(struct.treeString) /** * root |-- a: integer (nullable = true) |-- b: long (nullable = false) |-- c: boolean (nullable = false) */ println(struct.contains(StructField("f", IntegerType))) //false println(struct.mkString) //StructField(a,IntegerType,true)StructField(b,LongType,false)StructField(c,BooleanType,false) println(struct.prettyJson) /** * { "type" : "struct", "fields" : [ { "name" : "a", "type" : "integer", "nullable" : true, "metadata" : { } }, { "name" : "b", "type" : "long", "nullable" : false, "metadata" : { } }, { "name" : "c", "type" : "boolean", "nullable" : false, "metadata" : { } } ] } */ //更多操作可以查看API:http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.types.StructType } def main(args: Array[String]) { //schema_StructType() //structType_extracted() structType_opration() } }
3、Schema
---------Schema就是我们数据的数据结构描述,
一个Schema是一个数据结构的描述(比如描述一个Json文件),它可以是在运行的时候隐式导入,或者在编译的时候就导入。它是用一个StructField集合对象的StructType描述(用一个三元tuple,内部是:name,type.nullability),本来有四个信息的为什么会说是三元数组?其实metadata,你是可以调出来。
def schema_op()={ case class Person(name: String, age: Long) val sparkSession = SparkSession.builder().appName("data set example") .master("local").getOrCreate() import sparkSession.implicits._ val rdd = sparkSession.sparkContext.textFile("hdfs://master:9000/src/main/resources/people.txt") val dataSet = rdd.map(_.split(",")).map(p =>Person(p(0),p(1).trim.toLong)).toDS() println(dataSet.schema) //StructType(StructField(name,StringType,true), StructField(age,LongType,false)) /** * def schema: StructType = queryExecution.analyzed.schema * * def apply(name: String): StructField = { * nameToField.getOrElse(name, * throw new IllegalArgumentException(s"""Field "$name" does not exist.""")) * } */ val tmp: StructField = dataSet.schema("name") println(tmp) //StructField(name,StringType,true) println(tmp.name)//name println(tmp.dataType)//StringType println(tmp.nullable)//true println(tmp.metadata)//{} ---------------------