SpringBoot集成Hadoop系列二 ---- MapReduce统计数据文件的共同好友

代码:

package com.hadoop.reduce.mapper;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

/**
 * 查找共同的好友
 * @author linhaiy
 * @date 2019.05.18
 */
public class FriendsMapper extends Mapper {
	private Text k = new Text();
	private Text v = new Text();

	/**
	 * 读取 friends.txt 内容格式 A:B,C,D,F,E,O
	 * @param key
	 * @param value
	 * @param context
	 * @throws IOException
	 * @throws InterruptedException
	 */
	@Override
	protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
		String line = value.toString().trim();
		// 根据冒号拆分
		String[] personFriends = line.split(":");
		// 第一个为用户
		String person = personFriends[0];
		// 第二个为好友
		String friends = personFriends[1];
		// 好友根据逗号拆分
		String[] friendsList = friends.split(",");
		for (String friend : friendsList) {
			k.set(friend);
			v.set(person);
			context.write(k, v);
		}
	}
}
package com.hadoop.reduce.reducer;

import java.io.IOException;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

/**
 * 获取共同好友
 * @author linhaiy
 * @date 2019.05.18
 */
public class FriendsReduce extends Reducer {
	private Text k = new Text();
	private Text v = new Text();

	/**
	 * 读取 FriendsMapper1 输出,内容格式 B A
	 * @param key
	 * @param values
	 * @param context
	 * @throws IOException
	 * @throws InterruptedException
	 */
	@Override
	protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
		StringBuffer sb = new StringBuffer();
		// 循环好友
		for (Text person : values) {
			sb.append(person).append(",");
		}
		k.set(key);
		v.set(sb.toString());
		context.write(k, v);
	}
}
package com.hadoop.reduce.service;

import java.io.IOException;

import javax.annotation.PostConstruct;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.CombineTextInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

import com.hadoop.reduce.bean.StaffProvincePartitioner;
import com.hadoop.reduce.bean.WeiboInputFormat;
import com.hadoop.reduce.mapper.CounterMapper;
import com.hadoop.reduce.mapper.FriendsMapper;
import com.hadoop.reduce.mapper.JoinMapper;
import com.hadoop.reduce.mapper.StaffMap;
import com.hadoop.reduce.mapper.WeatherMap;
import com.hadoop.reduce.mapper.WeiboMapper;
import com.hadoop.reduce.mapper.WordCount;
import com.hadoop.reduce.mapper.WordCountMap;
import com.hadoop.reduce.model.GroupSortModel;
import com.hadoop.reduce.model.OrderInfo;
import com.hadoop.reduce.model.StaffModel;
import com.hadoop.reduce.model.Weibo;
import com.hadoop.reduce.reducer.FriendsReduce;
import com.hadoop.reduce.reducer.JoinReduce;
import com.hadoop.reduce.reducer.StaffReduce;
import com.hadoop.reduce.reducer.WeatherReduce;
import com.hadoop.reduce.reducer.WeiboReduce;
import com.hadoop.reduce.reducer.WordCountReduce;
import com.hadoop.util.GroupSort;

/**
 * Map/Reduce工具类
 * @author linhaiy
 * @date 2019.05.18
 */
@Component
public class ReduceJobsUtils {

	@Value("${hdfs.path}")
	private String path;

	private static String hdfsPath;

	/**
	 * 获取HDFS配置信息
	 * @return
	 */
	public static Configuration getConfiguration() {
		Configuration configuration = new Configuration();
		configuration.set("fs.defaultFS", hdfsPath);
		configuration.set("mapred.job.tracker", hdfsPath);
		// 运行在yarn的集群模式
		// configuration.set("mapreduce.framework.name", "yarn");
		// 这个配置是让main方法寻找该机器的mr环境
		// configuration.set("yarn.resourcemanmager.hostname", "node1");
		return configuration;
	}

	/**
	 * 获取共同好友
	 * @param jobName
	 * @param inputPath
	 * @param outputPath
	 * @throws IOException
	 * @throws ClassNotFoundException
	 * @throws InterruptedException
	 */
	public static void friends(String jobName, String inputPath, String outputPath)
			throws IOException, ClassNotFoundException, InterruptedException {
		Configuration config = getConfiguration();
		Job job = Job.getInstance(config, jobName);
		// 设置jar中的启动类,可以根据这个类找到相应的jar包
		job.setJarByClass(FriendsMapper.class);

		job.setMapperClass(FriendsMapper.class);
		job.setReducerClass(FriendsReduce.class);

		// 一般情况下mapper和reducer的输出的数据类型是一样的,所以我们用上面两条命令就行,如果不一样,我们就可以用下面两条命令单独指定mapper的输出key、value的数据类型
		// 设置Mapper的输出
		// job.setMapOutputKeyClass(Text.class);
		// job.setMapOutputValueClass(Text.class);

		// 设置reduce的输出
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(Text.class);

		// 指定输入输出文件的位置
		FileInputFormat.setInputPaths(job, new Path(inputPath));
		FileOutputFormat.setOutputPath(job, new Path(outputPath));

		job.waitForCompletion(true);
	}

	@PostConstruct
	public void getPath() {
		hdfsPath = this.path;
	}

	public static String getHdfsPath() {
		return hdfsPath;
	}
}
package com.hadoop.reduce.service;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.springframework.stereotype.Service;
import com.hadoop.hdfs.service.HdfsService;

/**
 * 单词统计
 * @author linhaiy
 * @date 2019.05.18
 */
@Service
public class MapReduceService {

	// 默认reduce输出目录
	private static final String OUTPUT_PATH = "/output";

	/**
	 * 获取共同好友
	 * @param jobName
	 * @param inputPath
	 * @throws Exception
	 */
	public void friends(String jobName, String inputPath) throws Exception {
		if (StringUtils.isEmpty(jobName) || StringUtils.isEmpty(inputPath)) {
			return;
		}
		// 输出目录 = output/当前Job
		String outputPath = OUTPUT_PATH + "/" + jobName;
		if (HdfsService.existFile(outputPath)) {
			HdfsService.deleteFile(outputPath);
		}
		ReduceJobsUtils.friends(jobName, inputPath, outputPath);
	}
}
package com.hadoop.reduce.controller;

import org.apache.commons.lang.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.RestController;
import com.hadoop.reduce.service.MapReduceService;
import com.hadoop.util.Result;

/**
 * MapReduce处理控制层
 * @author linhaiy
 * @date 2019.05.18
 */
@RestController
@RequestMapping("/hadoop/reduce")
public class MapReduceAction {

	@Autowired
	MapReduceService mapReduceService;

	/**
	 * 获取共同好友
	 * @param jobName
	 * @param inputPath
	 * @return
	 * @throws Exception
	 */
	@RequestMapping(value = "friends", method = RequestMethod.POST)
	@ResponseBody
	public Result friends(@RequestParam("jobName") String jobName, @RequestParam("inputPath") String inputPath)
			throws Exception {
		if (StringUtils.isEmpty(jobName) || StringUtils.isEmpty(inputPath)) {
			return new Result(Result.FAILURE, "请求参数为空");
		}
		mapReduceService.friends(jobName, inputPath);
		return new Result(Result.SUCCESS, "获取共同好友成功");
	}
}

 

你可能感兴趣的:(大数据开发,大数据开发)