Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。Flink以数据并行和流水线方式执行任意流数据程序,Flink的流水线运行时系统可以执行批处理和流处理程序。而Flink中的时间类型和窗口是非常重要概念,也是学习Flink必须要掌握的两个知识点。今天我们就来探讨一下这两个知识点。
Flink流式处理中支持不同类型的时间。分为以下几种:
通常,我们在Flink初始化流式运行环境时,就会设置流处理时间特性。这个设置很重要,它决定了数据流的行为方式。(例如:是否需要给事件分配时间戳),以及窗口操作应该使用什么样的时间类型。例如:KeyedStream.timeWindow(Time.seconds(30))。
我们接下来通过实现一个每5秒中进行一次单词计数的案例,来说明Flink中如何指定时间类型。
public class WordCountWindow {
public static void main(String[] args) throws Exception {
// 1. 初始化流式运行环境
Configuration conf = new Configuration();
StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf);
// 2. 设置时间处理类型,这里设置的方式处理时间
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
// 3. 定义数据源,每秒发送一个hadoop单词
DataStreamSource wordDS = env.addSource(new RichSourceFunction() {
private boolean isCanaled = false;
@Override
public void run(SourceContext ctx) throws Exception {
while (!isCanaled) {
ctx.collect("hadooop");
Thread.sleep(1000);
}
}
@Override
public void cancel() {
isCanaled = true;
}
});
// 4. 每5秒进行一次,分组统计
// 4.1 转换为元组
wordDS.map(word -> Tuple2.of(word, 1))
// 指定返回类型
.returns(Types.TUPLE(Types.STRING, Types.INT))
// 按照单词进行分组
.keyBy(t -> t.f0)
// 滚动窗口,3秒计算一次
.timeWindow(Time.seconds(3))
.reduce(new ReduceFunction>() {
@Override
public Tuple2 reduce(Tuple2 value1, Tuple2 value2) throws Exception {
return Tuple2.of(value1.f0, value1.f1 + value2.f1);
}
}, new RichWindowFunction, Tuple2, String, TimeWindow>() {
@Override
public void apply(String word, TimeWindow window, Iterable> input, Collector> out) throws Exception {
// 打印窗口开始、结束时间
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
System.out.println("窗口开始时间:" + sdf.format(window.getStart())
+ " 窗口结束时间:" + sdf.format(window.getEnd())
+ " 窗口计算时间:" + sdf.format(System.currentTimeMillis()));
int sum = 0;
Iterator> iterator = input.iterator();
while(iterator.hasNext()) {
Integer count = iterator.next().f1;
sum += count;
}
out.collect(Tuple2.of(word, sum));
}
}).print();
env.execute("app");
}
}
窗口开始时间:2020-02-05 00:22:21 窗口结束时间:2020-02-05 00:22:24 窗口计算时间:2020-02-05 00:22:24
4> (hadooop,2)
窗口开始时间:2020-02-05 00:22:24 窗口结束时间:2020-02-05 00:22:27 窗口计算时间:2020-02-05 00:22:27
4> (hadooop,3)
窗口开始时间:2020-02-05 00:22:27 窗口结束时间:2020-02-05 00:22:30 窗口计算时间:2020-02-05 00:22:30
4> (hadooop,3)
窗口开始时间:2020-02-05 00:22:30 窗口结束时间:2020-02-05 00:22:33 窗口计算时间:2020-02-05 00:22:33
4> (hadooop,3)
窗口开始时间:2020-02-05 00:22:33 窗口结束时间:2020-02-05 00:22:36 窗口计算时间:2020-02-05 00:22:36
4> (hadooop,3)
窗口开始时间:2020-02-05 00:22:36 窗口结束时间:2020-02-05 00:22:39 窗口计算时间:2020-02-05 00:22:39
我们可以看到,这个滚动窗口,每3秒计算一次,是按照系统时间来计算的。
我们再把时间窗口设置为1分钟,再试试。
窗口开始时间:2020-02-05 00:27:00 窗口结束时间:2020-02-05 00:28:00 窗口计算时间:2020-02-05 00:28:00
4> (hadooop,32)窗口开始时间:2020-02-05 00:28:00 窗口结束时间:2020-02-05 00:29:00 窗口计算时间:2020-02-05 00:29:00
4> (hadooop,60)
Windows是Flink流计算的核心,本文将概括的介绍几种窗口的概念,重点只放在窗口的应用上。
对于窗口的操作主要分为两种,分别对于Keyedstream和Datastream。他们的主要区别也仅仅在于建立窗口的时候一个为.window(...),一个为.windowAll(...)。对于Keyedstream的窗口来说,他可以使得多任务并行计算,每一个logical key stream将会被独立的进行处理。
stream
.keyBy(...) <- keyed versus non-keyed windows
.window(...)/.windowAll(...) <- required: "assigner"
[.trigger(...)] <- optional: "trigger" (else default trigger)
[.evictor(...)] <- optional: "evictor" (else no evictor)
[.allowedLateness(...)] <- optional: "lateness" (else zero)
[.sideOutputLateData(...)] <- optional: "output tag" (else no side output for late data)
.reduce/aggregate/fold/apply() <- required: "function"
[.getSideOutput(...)] <- optional: "output tag"
按照窗口的Assigner来分,窗口可以分为
Tumbling window, sliding window,session window,global window,custom window
每种窗口又可分别基于processing time和event time,这样的话,窗口的类型严格来说就有很多。
还有一种window叫做count window,依据元素到达的数量进行分配,之后也会提到。
窗口的生命周期开始在第一个属于这个窗口的元素到达的时候,结束于第一个不属于这个窗口的元素到达的时候。
固定相同间隔分配窗口,每个窗口之间没有重叠看图一眼明白。
下面的例子定义了每隔3毫秒一个窗口的流:
WindowedStream Rates = rates
.keyBy(MovieRate::getUserId)
.window(TumblingEventTimeWindows.of(Time.milliseconds(3)));
跟上面一样,固定相同间隔分配窗口,只不过每个窗口之间有重叠。窗口重叠的部分如果比窗口小,窗口将会有多个重叠,即一个元素可能被分配到多个窗口里去。
下面的例子给出窗口大小为10毫秒,重叠为5毫秒的流:
WindowedStream Rates = rates
.keyBy(MovieRate::getUserId)
.window(SlidingEventTimeWindows.of(Time.milliseconds(10), Time.milliseconds(5)));
这种窗口主要是根据活动的事件进行窗口化,他们通常不重叠,也没有一个固定的开始和结束时间。一个session window关闭通常是由于一段时间没有收到元素。在这种用户交互事件流中,我们首先想到的是将事件聚合到会话窗口中(一段用户持续活跃的周期),由非活跃的间隙分隔开。
// 静态间隔时间
WindowedStream Rates = rates
.keyBy(MovieRate::getUserId)
.window(EventTimeSessionWindows.withGap(Time.milliseconds(10)));
// 动态时间
WindowedStream Rates = rates
.keyBy(MovieRate::getUserId)
.window(EventTimeSessionWindows.withDynamicGap(()));
将所有相同keyed的元素分配到一个窗口里。好吧,就这样:
WindowedStream Rates = rates
.keyBy(MovieRate::getUserId)
.window(GlobalWindows.create());
窗口函数就是这四个:ReduceFunction,AggregateFunction,FoldFunction,ProcessWindowFunction。前两个执行得更有效,因为Flink可以增量地聚合每个到达窗口的元素。
Flink必须在调用函数之前在内部缓冲窗口中的所有元素,所以使用ProcessWindowFunction进行操作效率不高。不过ProcessWindowFunction可以跟其他的窗口函数结合使用,其他函数接受增量信息,ProcessWindowFunction接受窗口的元数据。
举一个AggregateFunction的例子吧,下面代码为MovieRate按user分组,且分配5毫秒的Tumbling窗口,返回每个user在窗口内评分的所有分数的平均值。
DataStream> Rates = rates
.keyBy(MovieRate::getUserId)
.window(TumblingEventTimeWindows.of(Time.milliseconds(5)))
.aggregate(new AggregateFunction>() {
@Override
public AverageAccumulator createAccumulator() {
return new AverageAccumulator();
}
@Override
public AverageAccumulator add(MovieRate movieRate, AverageAccumulator acc) {
acc.userId = movieRate.userId;
acc.sum += movieRate.rate;
acc.count++;
return acc;
}
@Override
public Tuple2 getResult(AverageAccumulator acc) {
return Tuple2.of(acc.userId, acc.sum/(double)acc.count);
}
@Override
public AverageAccumulator merge(AverageAccumulator acc0, AverageAccumulator acc1) {
acc0.count += acc1.count;
acc0.sum += acc1.sum;
return acc0;
}
});
public static class AverageAccumulator{
int userId;
int count;
double sum;
}
以下是部分输出:
...
1> (44,3.0)
4> (96,0.5)
2> (51,0.5)
3> (90,2.75)
...
看上面的代码,会发现add()函数特别生硬,因为我们想返回Tuple2
DataStream> Rates = rates
.keyBy(MovieRate::getUserId)
.window(TumblingEventTimeWindows.of(Time.milliseconds(5)))
.aggregate(new MyAggregateFunction(), new MyProcessWindowFunction());
public static class MyAggregateFunction implements AggregateFunction {
@Override
public AverageAccumulator createAccumulator() {
return new AverageAccumulator();
}
@Override
public AverageAccumulator add(MovieRate movieRate, AverageAccumulator acc) {
acc.sum += movieRate.rate;
acc.count++;
return acc;
}
@Override
public Double getResult(AverageAccumulator acc) {
return acc.sum/(double)acc.count;
}
@Override
public AverageAccumulator merge(AverageAccumulator acc0, AverageAccumulator acc1) {
acc0.count += acc1.count;
acc0.sum += acc1.sum;
return acc0;
}
}
public static class MyProcessWindowFunction extends
ProcessWindowFunction, Integer, TimeWindow> {
@Override
public void process(Integer key,
Context context,
Iterable results,
Collector> out) throws Exception {
Double result = results.iterator().next();
out.collect(new Tuple2<>(key, result));
}
}
public static class AverageAccumulator{
int count;
double sum;
}
可以得到,结果与上面一样,但代码好看了很多。
触发器定义了窗口何时准备好被窗口处理。每个窗口分配器默认都有一个触发器,如果默认的触发器不符合你的要求,就可以使用trigger(...)自定义触发器。
通常来说,默认的触发器适用于多种场景。例如,多有的event-time窗口分配器都有一个EventTimeTrigger作为默认触发器。该触发器在watermark通过窗口末尾时出发。
PS:GlobalWindow默认的触发器时NeverTrigger,该触发器从不出发,所以在使用GlobalWindow时必须自定义触发器。
Evictors可以在触发器触发之后以及窗口函数被应用之前和/或之后可选择的移除元素。使用Evictor可以防止预聚合,因为窗口的所有元素都必须在应用计算逻辑之前先传给Evictor进行处理
当使用event-time窗口时,元素可能会晚到,例如Flink用于跟踪event-time进度的watermark已经超过了窗口的结束时间戳。
默认来说,当watermark超过窗口的末尾时,晚到的元素会被丢弃。但是flink也允许为窗口operator指定最大的allowed lateness,以至于可以容忍在彻底删除元素之前依然接收晚到的元素,其默认值是0。
为了支持该功能,Flink会保持窗口的状态,知道allowed lateness到期。一旦到期,flink会删除窗口并删除其状态。
把晚到的元素当作side output。
SingleOutputStreamOperator result = input
.keyBy()
.window()
.allowedLateness(