对于前面已经提到的类及一些细节不再给出。对于稀疏矩阵的了解是必要的。
from abc import ABCMeta, abstractmethod
import warnings
import numpy as np
from scipy import linalg
from scipy import sparse
from scipy.sparse import linalg as sp_linalg
from .base import LinearClassifierMixin, LinearModel, _rescale_data
from .sag import sag_solver :是一种随机平均梯度下降式的求解岭回归与logistic回归的包,
使用梯度下降法,
这种算法收敛很快。
from ..base import RegressorMixin
from ..utils.extmath import safe_aparse_dot
from ..utils.extmath import row_norms: 行范数,不支持稀疏矩阵。
from ..utils import check_X_y
from ..utils import check_array :转换为ndarray类型。
from ..utils import check_consistent_length: 检查一个ndarray的list 是否所有元素第一个
维度都相等。(i.e. same length)
from ..utils import column_or_1d: 特殊的拉直函数,接受类似feature形式的ndarray,
即在第二个维度上只有1维,并将其按列拉直为以为数组。
from ..preprocessing import LabelBinarizer:
对一对多问题将标签进行二值化。
from ..model_selection import GridSearchCV
from ..externsls import six
from ..metrics.scorer import check_scoring: 对能够进行返回score估计的模型,返回进行
score计算的函数。
下面先不对具体的类,而是接口进行说明。(无组织架构)
sp_linalg.aslinearoperator: 将对象(ndarray, sparse, matrix an so on)转换为线性算子。
np.empty(shape): 返回相应shape的未初始化的ndarray.
sp_linalg.cg: 使用共轭梯度(Conjugate Gradient)法解线性系统。
sq_linalg.lsqr: lsqr :QR分解。
ndarray.flat:(。。。)
np.atleast_1d: 标量化为一维数组,高维保持。
def _solve_sparse_cg(X, y, alpha, max_iter = None, tol = 1e-3, verbose = 0):
n_samples, n_features = X.shape
X1 = sp_linalg.aslinearoperator(X)
coefs = np.empty((y.shape[1], n_features))
if n_features > n_samples:
def create_mv(curr_alpha):
def _mv(x):
return X1.matvec(X1.rmatvec(x)) + curr_alpha * x
return _mv
else:
def create_mv(curr_alpha):
def _mv(curr_alpha):
return X1.rmatvec(X1.matvec(x)) + curr_alpha * x
return _mv
for i in range(y.shape[1]):
y_column = y[:, i]
mv = create_mv(alpha[i])
if n_features > n_samples:
C = sp_linalg.LinearOperator((n_samples, n_samples), matvec = mv, dtype = x.dtype)
coef, info = sp_linalg.cg(C, y_column, tol = tol)
coefs[i] = X1.rmatvec(coef)
else:
y_column = X1.rmatvec(y_column)
C = sp_linalg.LinearOperator((n_features, n_features), matvec = mv, dtype = x.dtype)
coefs[i], info = sp_linalg.cg(C, y_column, maxiter = max_iter, tol = tol)
if info < 0:
raise ValueError("Failed with error code %d" % info)
if max_iter is None and info > 0 and verbose:
warning.warn("sparse_cg did not coverge sfter %d iterations." % info)
return coefs
_solve_sparse_cg:
这里将在理论意义上求逆矩阵的过程转换为线性系统的解。
所用到的线性算子仅仅是定义了对于矩阵的变换,matvec 向量乘积变换,
rmatvec 共轭转置变换。
函数分n_features 与n_samples的大小进行了分类,可以证明在取逆的情况
下是相等的。(Kernel Ridge Regression.pdf)
返回系数
def _solve_lsqr(X, y, alpha, max_iter = None, tol = 1e-3):
n_samples, n_features = X.shape
coefs = np.empty((y.shape[1], n_features))
n_iter = np.empty(y.shape[1], dtype = np.int32)
sqrt_alpha = np.sqrt(alpha)
for i in range(y.shape[1]):
y_column = y[:,i]
info = sp_linalg.lsqr(X, y_column, damp = sqrt_alpha[i], atol = tol, btol= tol, iter_lim = max_iter)
coefs[i] = info[0]
n_iter[i] = info[2]
return coefs, n_iter
_solve_lsqr:
返回线性系统的最小二乘解。
def _solve_cholesky(X, y, alpha):
n_samples, n_features = X.shape
n_targets = y.shape[1]
A = safe_sparse_dot(X.T, X, dense_output = True)
Xy = safe_sparse_dot(X.T, y, dense_output = True)
one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]])
if one_alpha:
A.flat[::n_features + 1] ++ alpha[0]
return linalg.solve(A, Xy, sym_pos = True, overwrite_a = True)
else:
coefs = np.empty([n_targets, n_features])
for coef, target , curr_alpha in zip(coefs, Xy.T, alpha):
A.flat[::n_features + 1] += curr_alpha
coef[:] = linalg.solve(A, target, sym_pos = True, overwrite_a = False).ravel()
A.flat[::n_features + 1] -= curr_alpha
return coefs
_solve_cholesky:
由于在linalg.solve中选择了sym_pos为True,故指定了矩阵为对称正定矩阵,
采用cholesky分解来解(分解为三角阵的内积)
A.flat[::n_features + 1]实现了对对角元素的简写。
def _solve_cholesky_kernel(K, y, alpha, sample_weight = None, copy = False):
n_samples = K.shape[0]
n_targets = y.shape[1]
if copy:
K = K.copy()
alpha = np.atleast_1d(alpha)
one_alpha = (alpha == alpha[0]).all()
has_sw = isinstance(sample_weight, np.ndarray) or sample_weight not in [1.0, None]
if has_sw:
sw = np.sqrt(np.atleast_1d(sample_weight))
y = y * sw[:, np.newaxis]
K *= np.outer(sw, sw)
if one_alpha:
K.flat[::n_samples + 1] += alpha[0]
try:
dual_coef = linalg.solve(K, y, sym_pos = True, overwrite_a = False)
except np.linalg.LinAlgError:
warning.warn("Singular matrix in solving dual problem. using "
"least-squares solution instead.")
dual_coef = linalg.lstsq(K, y)[0]
K.flat[::n_samples + 1] -= alpha[0]
if has_sw:
dual_coef *= sw[:,np.newaxis]
return dual_coef
else:
dual_coefs = np.empty([n_targets, n_samples])
for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha):
K.flat[::n_samples + 1] += current_alpha
dual_coef[:] = linalg.solve(K, target, sym_pos = True, overwrite_a = False).ravel()
K.flat[::n_samples + 1] -= current_alpha
if has_sw:
dual_coefs *= sw[np.newaxis, :]
return dual_coefs.T
_solve_cholesky_kernel:
该函数允许对样本赋予权重,唯一与_solve_cholesky_kernel的不同是其使用的核
矩阵需要给出。
还提供了当解等式linalg.solve失效时使用linalg.lstsq求最小二乘解的方案。
def _solve_svd(X, y, alpha):
U, s, Vt = linalg.svd(X, full_matrices = False)
idx = s > 1e-15
s_nnz = s[idx][:,np.newaxis]
UTy = np.dot(U.T, y)
d = np.zeros((s.size, alpha.size))
d[idx] = s_nnz / (s_nnz ** 2 + alpha)
d_UT_y = d * UTy
return np.dot(Vt.T, d_UT_y).T
_solve_svd:
这里仅仅是将上面_solve_cholesky_kernel的过程先将X进行奇异值分解,
将奇异值推导的岭回归结果求解出来。
这里以1e-15为阈值,砍掉了小的奇异值(与scipy.linalg.pinv求广义逆矩阵
特征值阈值相同)
def ridge_regression(X, y, alpha, sample_weight = None, solver = 'auto',
max_iter = None, tol = ie-3, verbose = 0, random_state = None,
return_n_iter = False, return_intercept = False):
if return_intercept and sparse.issparse(X) and solver != 'sag':
if solver != 'auto':
warning.warn("In Ridge, only 'sag' solver can currently fit the "
"intercept when X is sparse. Solver has been automatically "
"changed into 'sag'.")
solver = 'sag'
if solver == 'sag':
X = check_array(X, accept_sparse = ['csr'],
dtype = np.float64, order = 'C')
y = check_array(y, dtype = np.float64, ensure_2d = False, order = 'F')
else:
X = check_array(X, accept_sparse = ['csr', 'csc', 'coo'], dtype = np.float64)
y = check_array(y, dtype = 'numeric', ensure_2d = False)
check_consistent_length(X, y)
n_samples, n_features = X.shape
if y.ndim > 2:
raise ValueError("Target y has the wrong shape %s" % str(y,shape))
ravel = False
if y.ndim == 1:
y = y.reshpe(-1, 1)
ravel = True
n_samples_, n_targets = y.shape
if n_samples != n_samples_:
raise ValueError("Number of samples in X and y does not correspond:"
" %d != %d" % (n_samples, n_samples_))
has_sw = sample_weight is not None
if solver == 'auto':
if not sparse.issparse(X) or has_sw:
solver = 'cholesky'
else:
solver = 'sparse_cg'
elif solver == 'lsqr' and not hasattr(sp_linalg, 'lsqr'):
warning.warn("lsqr not avaliable on this machine, falling back to sparse_cg")
solver = 'sparse_cg'
if has_sw:
if np.atleast_1d(sample_weight).ndim > 1:
raise ValueError("Sample weights must be 1D array or scalar")
if solver != 'sag':
X, y = _rescale_data(X, y, sample_weight)
alpha = np.asarray(alpha).ravel()
if alpha.size not in [1, n_targets]:
raise ValueError("Number of targets nad number of penalties "
"do nt correspond: %d != %d" % (alpha.size, n_targets))
if alpha.size == 1 and n_targets > 1:
alpha = np.repeat(alpha, n_targets)
if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr', 'sag'):
raise ValueError('Solver %s not understood' % solver)
n_iter = None
if solver == 'sparse_cg':
coef = _solve_sparse_cg(X, y, alpha, max_iter, tol, verbose)
elif solver == 'lsqr':
coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol)
elif solver == 'cholesky':
if n_features > n_samples:
K = safe_sparse_dot(X, X.T, dense_output = True)
try:
dual_coef = _solve_cholesky_kernel(K, y, alpha)
coef = safe_sparse_dot(X.T, dual_coef, dense_output = True).T
except linalg.LinAlgError:
solver = 'svd'
else:
try:
coef = _solve_cholesky(X, y, alpha)
except linalg.LinAlgError:
solver = 'svd'
elif solver == 'sag':
max_squared_sum = row_norms(X, squared = True).max()
coef = np.empty([y.shape[1], n_features])
n_iter = np.empty(y.shape[1], dtype = np.int32)
intercept = np.zeros((y.shape[1],))
for i, (alpha_i, target) in enumerate(zip(alpha, y.T)):
init = {'coef': np.zeros((n_features + int(return_intercept), 1))}
coef_, n_iter_, _ = sag_solver(X, target.ravel(), sample_weight, 'squared',
alpha_i, max_iter, tol, verbose, random_state, False, max_squared_sum, init)
if return_intercept:
coef[i] = coef_[:-1]
intercept[i] = coef_[-1]
else:
coef[i] = coef_
n_iter[i] = n_iter_
if intercept.shape[0] == 1:
intercept = intercept[0]
coef = np.asarray(coef)
if solver == 'svd':
if sparse.issparse(X):
raise TypeError('SVD solver does not support sparse inputs currently')
coef = _solve_svd(X, y, alpha)
if ravel:
coef = coef.ravel()
if return_n_iter and return_intercept:
return coef, n_iter, intercept
elif return_intercept:
return coef, intercept
elif return_n_iter:
return coef, n_iter
else:
return coef
ridge_regression:
这仅仅是对上面所提到的具体方法的统一接口。
岭回归当数据阵为sparse时仅能用随机梯度下降法"sag"求解。
当solver选项为'auto'时,对非稀疏矩阵或有加权的情况,采用cholesky
分解法解,否则使用sparse_cg
n_features > n_samples 在cholesky分解下采用核方法(仅仅是不变的线性核)
从这里可以看到当矩阵为奇异时采用svd奇异值分解求解。
svd不支持稀疏矩阵求解。