Android Handler消息处理机制面试5连问

   Handler消息处理机制,相信做Android的同学都知道,我们先来看下面一段代码:

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;
import android.os.Handler;
import android.os.Message;
import android.widget.Toast;


public class MainActivity extends AppCompatActivity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        new Thread(new Runnable() {
            @Override
            public void run() {
                Message message = new Message();
                message.what = 1;
                handler.sendMessage(message);
            }
        }).start();
    }


    private Handler handler = new Handler(){
        @Override
        public void handleMessage(Message msg) {
            switch (msg.what){
                case 1:
                    Toast.makeText(MainActivity.this, "handle message", Toast.LENGTH_SHORT).show();
                    break;
            }
        }
    };
}

上面这种方式主要用在子线程中数据处理完之后更新UI。对于这种方式相信大多数刚接触android不久的同学也都知道,也就是初级认识,那么Handler是如何实现线程间通信的呢?相信读过《Android艺术探索》的同学都知道,每个线程都有一个Looper,且每个线程只有一个Looper(为什么只有一个Looper?下面介绍),那么不例外我们主线程也有一个Looper,从上面代码中可以看到Handler是在主线程中创建,而在子线程中通过调用handler.sendMessage();方法将消息发送给主线程,如此实现了线程间通信,也就可以更新UI了。那Handler是消息流程过程是怎样的呢?

Android Handler消息处理机制面试5连问_第1张图片

如上图所示实现消息循环 ,具体源码如下:

/**
 * Pushes a message onto the end of the message queue after all pending messages
 * before the current time. It will be received in {@link #handleMessage},
 * in the thread attached to this handler.
 *  
 * @return Returns true if the message was successfully placed in to the 
 *         message queue.  Returns false on failure, usually because the
 *         looper processing the message queue is exiting.
 */
public final boolean sendMessage(Message msg)
{
    return sendMessageDelayed(msg, 0);
}

/**
 * Enqueue a message into the message queue after all pending messages
 * before (current time + delayMillis). You will receive it in
 * {@link #handleMessage}, in the thread attached to this handler.
 *  
 * @return Returns true if the message was successfully placed in to the 
 *         message queue.  Returns false on failure, usually because the
 *         looper processing the message queue is exiting.  Note that a
 *         result of true does not mean the message will be processed -- if
 *         the looper is quit before the delivery time of the message
 *         occurs then the message will be dropped.
 */
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
    if (delayMillis < 0) {
        delayMillis = 0;
    }
    return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}

/**
 * Enqueue a message into the message queue after all pending messages
 * before the absolute time (in milliseconds) uptimeMillis.
 * The time-base is {@link android.os.SystemClock#uptimeMillis}.
 * Time spent in deep sleep will add an additional delay to execution.
 * You will receive it in {@link #handleMessage}, in the thread attached
 * to this handler.
 * 
 * @param uptimeMillis The absolute time at which the message should be
 *         delivered, using the
 *         {@link android.os.SystemClock#uptimeMillis} time-base.
 *         
 * @return Returns true if the message was successfully placed in to the 
 *         message queue.  Returns false on failure, usually because the
 *         looper processing the message queue is exiting.  Note that a
 *         result of true does not mean the message will be processed -- if
 *         the looper is quit before the delivery time of the message
 *         occurs then the message will be dropped.
 */
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}

从源码可知,调用handler.sendMessage()方法最终是调用enqueueMessage()将消息放入消息队列MessageQueue,然后同过Looper.loop()方法取出消息。

/**
 * Run the message queue in this thread. Be sure to call
 * {@link #quit()} to end the loop.
 */
public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;

    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();

    // Allow overriding a threshold with a system prop. e.g.
    // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
    final int thresholdOverride =
            SystemProperties.getInt("log.looper."
                    + Process.myUid() + "."
                    + Thread.currentThread().getName()
                    + ".slow", 0);

    boolean slowDeliveryDetected = false;

    for (;;) {
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

        // This must be in a local variable, in case a UI event sets the logger
        final Printer logging = me.mLogging;
        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }

        final long traceTag = me.mTraceTag;
        long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
        long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
        if (thresholdOverride > 0) {
            slowDispatchThresholdMs = thresholdOverride;
            slowDeliveryThresholdMs = thresholdOverride;
        }
        final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
        final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);

        final boolean needStartTime = logSlowDelivery || logSlowDispatch;
        final boolean needEndTime = logSlowDispatch;

        if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
            Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
        }

        final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
        final long dispatchEnd;
        try {
            msg.target.dispatchMessage(msg);
            dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
        } finally {
            if (traceTag != 0) {
                Trace.traceEnd(traceTag);
            }
        }
        if (logSlowDelivery) {
            if (slowDeliveryDetected) {
                if ((dispatchStart - msg.when) <= 10) {
                    Slog.w(TAG, "Drained");
                    slowDeliveryDetected = false;
                }
            } else {
                if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                        msg)) {
                    // Once we write a slow delivery log, suppress until the queue drains.
                    slowDeliveryDetected = true;
                }
            }
        }
        if (logSlowDispatch) {
            showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
        }

        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }

        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }

        msg.recycleUnchecked();
    }
}

loop()方法中关键一行代码msg.target.dispatchMessage(msg);将消息分配给handler进行处理,如此完成消息循环,其中msg.target就是Handler。从loop源码中可以看出,loop是一个无限循环,那主线程为什么不会发生ANR呢?

       在主线程的MessageQueue没有消息时,便阻塞在loop的queue.next()中的nativePollOnce()方法里,此时主线程会释放CPU资源进入休眠状态,直到下个消息到达或者有事务发生,通过往pipe管道写端写入数据来唤醒主线程工作。这里采用的epoll机制,是一种IO多路复用机制,可以同时监控多个描述符,当某个描述符就绪(读或写就绪),则立刻通知相应程序进行读或写操作,本质同步I/O,即读写是阻塞的。 所以说,主线程大多数时候都是处于休眠状态,并不会消耗大量CPU资源。

       读过《Android艺术探索》我们也知道,一个线程只有一个Looper,那为什么呢?看下面源码,从Looper.prepare()入手。

/** Initialize the current thread as a looper.
  * This gives you a chance to create handlers that then reference
  * this looper, before actually starting the loop. Be sure to call
  * {@link #loop()} after calling this method, and end it by calling
  * {@link #quit()}.
  */
public static void prepare() {
    prepare(true);
}

private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
}

从源码中可以发现,如果当前线程中已经存在Looper,则会抛出"Only one Looper may be created per thread"的异常。那handler机制如何保证线程消息不被其他线程处理呢?答案是TreadLocal,那ThreadLocal是如何保证数据的独立性的呢?继续看源码。

public void set(T value) {
     Thread t = Thread.currentThread();
     ThreadLocalMap map = getMap(t);
     if (map != null)
         map.set(this, value);
     else
         createMap(t, value);
 }
 
 
 
 public T get() {
     Thread t = Thread.currentThread();
     ThreadLocalMap map = getMap(t);
     if (map != null) {
         ThreadLocalMap.Entry e = map.getEntry(this);
         if (e != null) {
             @SuppressWarnings("unchecked")
             T result = (T)e.value;
             return result;
         }
     }
     return setInitialValue();
 }

关键代码:Thread t = Thread.currentThread();取的是当前线程的ThreadLocal,如此保证数据的独立性。

 

如有不正之处,欢迎指正!谢谢!

你可能感兴趣的:(Android)