/** Spark SQL源代码分析系列文章*/
接上一篇文章Spark SQL Catalyst源代码分析之Physical Plan。本文将介绍Physical Plan的toRDD的详细实现细节:
我们都知道一段sql,真正的运行是当你调用它的collect()方法才会运行Spark Job,最后计算得到RDD。 lazy val toRdd: RDD[Row] = executedPlan.execute()
Spark Plan基本包括4种操作类型,即BasicOperator基本类型,还有就是Join、Aggregate和Sort这样的稍复杂的。
如图:
一、BasicOperator
1.1、Project
这个f函数事实上是new了一个MutableProjection,然后循环的对每一个partition进行Convert。
case class Project(projectList: Seq[NamedExpression], child: SparkPlan) extends UnaryNode {
override def output = projectList.map(_.toAttribute)
override def execute() = child.execute().mapPartitions { iter => //对每一个分区进行f映射
@transient val reusableProjection = new MutableProjection(projectList)
iter.map(reusableProjection)
}
}
通过观察MutableProjection的定义,能够发现。就是bind references to a schema 和 eval的过程:
假设输入的Row已经有Schema了,则传入的Seq[Expression]也会bound到当前的Schema。
case class MutableProjection(expressions: Seq[Expression]) extends (Row => Row) {
def this(expressions: Seq[Expression], inputSchema: Seq[Attribute]) =
this(expressions.map(BindReferences.bindReference(_, inputSchema))) //bound schema
private[this] val exprArray = expressions.toArray
private[this] val mutableRow = new GenericMutableRow(exprArray.size) //新的Row
def currentValue: Row = mutableRow
def apply(input: Row): Row = {
var i = 0
while (i < exprArray.length) {
mutableRow(i) = exprArray(i).eval(input) //依据输入的input,即一个Row,计算生成的Row
i += 1
}
mutableRow //返回新的Row
}
}
1.2、Filter
case class Filter(condition: Expression, child: SparkPlan) extends UnaryNode {
override def output = child.output
override def execute() = child.execute().mapPartitions { iter =>
iter.filter(condition.eval(_).asInstanceOf[Boolean]) //计算表达式 eval(input row)
}
}
1.3、Sample
case class Sample(fraction: Double, withReplacement: Boolean, seed: Long, child: SparkPlan)
extends UnaryNode
{
override def output = child.output
// TODO: How to pick seed?
override def execute() = child.execute().sample(withReplacement, fraction, seed)
}
1.4、Union
case class Union(children: Seq[SparkPlan])(@transient sqlContext: SQLContext) extends SparkPlan {
// TODO: attributes output by union should be distinct for nullability purposes
override def output = children.head.output
override def execute() = sqlContext.sparkContext.union(children.map(_.execute())) //子查询的结果进行union
override def otherCopyArgs = sqlContext :: Nil
}
1.5、Limit
case class Limit(limit: Int, child: SparkPlan)(@transient sqlContext: SQLContext)
extends UnaryNode {
// TODO: Implement a partition local limit, and use a strategy to generate the proper limit plan:
// partition local limit -> exchange into one partition -> partition local limit again
override def otherCopyArgs = sqlContext :: Nil
override def output = child.output
override def executeCollect() = child.execute().map(_.copy()).take(limit) //直接在driver调用take
override def execute() = {
val rdd = child.execute().mapPartitions { iter =>
val mutablePair = new MutablePair[Boolean, Row]()
iter.take(limit).map(row => mutablePair.update(false, row)) //每一个分区先计算limit
}
val part = new HashPartitioner(1)
val shuffled = new ShuffledRDD[Boolean, Row, Row, MutablePair[Boolean, Row]](rdd, part) //须要shuffle,来repartition
shuffled.setSerializer(new SparkSqlSerializer(new SparkConf(false)))
shuffled.mapPartitions(_.take(limit).map(_._2)) //最后单独一个partition来take limit
}
}
1.6、TakeOrdered
case class TakeOrdered(limit: Int, sortOrder: Seq[SortOrder], child: SparkPlan)
(@transient sqlContext: SQLContext) extends UnaryNode {
override def otherCopyArgs = sqlContext :: Nil
override def output = child.output
@transient
lazy val ordering = new RowOrdering(sortOrder) //这里是通过RowOrdering来实现排序的
override def executeCollect() = child.execute().map(_.copy()).takeOrdered(limit)(ordering)
// TODO: Terminal split should be implemented differently from non-terminal split.
// TODO: Pick num splits based on |limit|.
override def execute() = sqlContext.sparkContext.makeRDD(executeCollect(), 1)
}
1.7、Sort
case class Sort(
sortOrder: Seq[SortOrder],
global: Boolean,
child: SparkPlan)
extends UnaryNode {
override def requiredChildDistribution =
if (global) OrderedDistribution(sortOrder) :: Nil else UnspecifiedDistribution :: Nil
@transient
lazy val ordering = new RowOrdering(sortOrder) //排序顺序
override def execute() = attachTree(this, "sort") {
// TODO: Optimize sorting operation?
child.execute()
.mapPartitions(
iterator => iterator.map(_.copy()).toArray.sorted(ordering).iterator, //每一个分区调用sorted方法,传入ordering排序规则,进行排序
preservesPartitioning = true)
}
override def output = child.output
}
1.8、ExistingRdd
object ExistingRdd {
def convertToCatalyst(a: Any): Any = a match {
case o: Option[_] => o.orNull
case s: Seq[Any] => s.map(convertToCatalyst)
case p: Product => new GenericRow(p.productIterator.map(convertToCatalyst).toArray)
case other => other
}
def productToRowRdd[A <: Product](data: RDD[A]): RDD[Row] = {
data.mapPartitions { iterator =>
if (iterator.isEmpty) {
Iterator.empty
} else {
val bufferedIterator = iterator.buffered
val mutableRow = new GenericMutableRow(bufferedIterator.head.productArity)
bufferedIterator.map { r =>
var i = 0
while (i < mutableRow.length) {
mutableRow(i) = convertToCatalyst(r.productElement(i))
i += 1
}
mutableRow
}
}
}
}
def fromProductRdd[A <: Product : TypeTag](productRdd: RDD[A]) = {
ExistingRdd(ScalaReflection.attributesFor[A], productToRowRdd(productRdd))
}
}
二、 Join Related Operators
HashJoin:
trait HashJoin {
val leftKeys: Seq[Expression]
val rightKeys: Seq[Expression]
val buildSide: BuildSide
val left: SparkPlan
val right: SparkPlan
lazy val (buildPlan, streamedPlan) = buildSide match { //模式匹配,将physical plan封装形成Tuple2,假设是buildLeft。那么就是(left,right),否则是(right,left)
case BuildLeft => (left, right)
case BuildRight => (right, left)
}
lazy val (buildKeys, streamedKeys) = buildSide match { //模式匹配,将expression进行封装Tuple2
case BuildLeft => (leftKeys, rightKeys)
case BuildRight => (rightKeys, leftKeys)
}
def output = left.output ++ right.output
@transient lazy val buildSideKeyGenerator = new Projection(buildKeys, buildPlan.output) //生成buildSideKey来依据Expression来计算Row返回结果
@transient lazy val streamSideKeyGenerator = //生成streamSideKeyGenerator来依据Expression来计算Row返回结果
() => new MutableProjection(streamedKeys, streamedPlan.output)
def joinIterators(buildIter: Iterator[Row], streamIter: Iterator[Row]): Iterator[Row] = { //把build表的Iterator[Row]和streamIterator[Row]进行join操作返回Join后的Iterator[Row]
// TODO: Use Spark's HashMap implementation.
val hashTable = new java.util.HashMap[Row, ArrayBuffer[Row]]() //匹配主要使用HashMap实现
var currentRow: Row = null
// Create a mapping of buildKeys -> rows
while (buildIter.hasNext) { //眼下仅仅对build Iterator进行迭代,形成rowKey,Rows,相似wordCount,可是这里不是累加Value,而是Row的集合。
currentRow = buildIter.next() val rowKey = buildSideKeyGenerator(currentRow) //计算rowKey作为HashMap的key if(!rowKey.anyNull) { val existingMatchList = hashTable.get(rowKey) val matchList = if (existingMatchList == null) { val newMatchList = new ArrayBuffer[Row]() hashTable.put(rowKey, newMatchList) //(rowKey, matchedRowList) newMatchList } else { existingMatchList } matchList += currentRow.copy() //返回matchList } } new Iterator[Row] { //最后用streamedRow的Key来匹配buildSide端的HashMap private[this] var currentStreamedRow: Row = _ private[this] var currentHashMatches: ArrayBuffer[Row] = _ private[this] var currentMatchPosition: Int = -1 // Mutable per row objects. private[this] val joinRow = new JoinedRow private[this] val joinKeys = streamSideKeyGenerator() override final def hasNext: Boolean = (currentMatchPosition != -1 && currentMatchPosition < currentHashMatches.size) || (streamIter.hasNext && fetchNext()) override final def next() = { val ret = buildSide match { case BuildRight => joinRow(currentStreamedRow, currentHashMatches(currentMatchPosition)) //右连接的话,streamedRow放左边。匹配到的key的Row放到右表 case BuildLeft => joinRow(currentHashMatches(currentMatchPosition), currentStreamedRow) //左连接的话,相反。
} currentMatchPosition += 1 ret } /** * Searches the streamed iterator for the next row that has at least one match in hashtable. * * @return true if the search is successful, and false if the streamed iterator runs out of * tuples. */ private final def fetchNext(): Boolean = { currentHashMatches = null currentMatchPosition = -1 while (currentHashMatches == null && streamIter.hasNext) { currentStreamedRow = streamIter.next() if (!joinKeys(currentStreamedRow).anyNull) { currentHashMatches = hashTable.get(joinKeys.currentValue) //streamedRow从buildSide里的HashTable里面匹配rowKey } } if (currentHashMatches == null) { false } else { currentMatchPosition = 0 true } } } } }
class JoinedRow extends Row {
private[this] var row1: Row = _
private[this] var row2: Row = _
.........
def copy() = {
val totalSize = row1.size + row2.size
val copiedValues = new Array[Any](totalSize)
var i = 0
while(i < totalSize) {
copiedValues(i) = apply(i)
i += 1
}
new GenericRow(copiedValues) //返回一个新的合并后的Row
}
2.1、LeftSemiJoinHash
case class LeftSemiJoinHash(
leftKeys: Seq[Expression],
rightKeys: Seq[Expression],
left: SparkPlan,
right: SparkPlan) extends BinaryNode with HashJoin {
val buildSide = BuildRight //buildSide是以右表为基准
override def requiredChildDistribution =
ClusteredDistribution(leftKeys) :: ClusteredDistribution(rightKeys) :: Nil
override def output = left.output
def execute() = {
buildPlan.execute().zipPartitions(streamedPlan.execute()) { (buildIter, streamIter) => //右表的物理计划运行后生成RDD,利用zipPartitions对Partition进行合并。然后用上述方法实现。
val hashSet = new java.util.HashSet[Row]()
var currentRow: Row = null
// Create a Hash set of buildKeys
while (buildIter.hasNext) {
currentRow = buildIter.next()
val rowKey = buildSideKeyGenerator(currentRow)
if(!rowKey.anyNull) {
val keyExists = hashSet.contains(rowKey)
if (!keyExists) {
hashSet.add(rowKey)
}
}
}
val joinKeys = streamSideKeyGenerator()
streamIter.filter(current => {
!joinKeys(current).anyNull && hashSet.contains(joinKeys.currentValue)
})
}
}
}
2.2、BroadcastHashJoin
case class BroadcastHashJoin(
leftKeys: Seq[Expression],
rightKeys: Seq[Expression],
buildSide: BuildSide,
left: SparkPlan,
right: SparkPlan)(@transient sqlContext: SQLContext) extends BinaryNode with HashJoin {
override def otherCopyArgs = sqlContext :: Nil
override def outputPartitioning: Partitioning = left.outputPartitioning
override def requiredChildDistribution =
UnspecifiedDistribution :: UnspecifiedDistribution :: Nil
@transient
lazy val broadcastFuture = future { //利用SparkContext广播表
sqlContext.sparkContext.broadcast(buildPlan.executeCollect())
}
def execute() = {
val broadcastRelation = Await.result(broadcastFuture, 5.minute)
streamedPlan.execute().mapPartitions { streamedIter =>
joinIterators(broadcastRelation.value.iterator, streamedIter) //调用joinIterators对每一个分区map
}
}
}
2.3、ShuffleHashJoin
然后利用SparkContext里的zipPartitions方法对每一个分区进行zip。
case class ShuffledHashJoin(
leftKeys: Seq[Expression],
rightKeys: Seq[Expression],
buildSide: BuildSide,
left: SparkPlan,
right: SparkPlan) extends BinaryNode with HashJoin {
override def outputPartitioning: Partitioning = left.outputPartitioning
override def requiredChildDistribution =
ClusteredDistribution(leftKeys) :: ClusteredDistribution(rightKeys) :: Nil
def execute() = {
buildPlan.execute().zipPartitions(streamedPlan.execute()) {
(buildIter, streamIter) => joinIterators(buildIter, streamIter)
}
}
}
原创文章,转载请注明:
转载自:OopsOutOfMemory盛利的Blog。作者: OopsOutOfMemory
本文链接地址:http://blog.csdn.net/oopsoom/article/details/38274621
注:本文基于署名-非商业性使用-禁止演绎 2.5 中国大陆(CC BY-NC-ND 2.5 CN)协议。欢迎转载、转发和评论。可是请保留本文作者署名和文章链接。如若须要用于商业目的或者与授权方面的协商,请联系我。