已知 A ( x 1 , y 1 , z 1 ) A(x_1,y_1,z_1) A(x1,y1,z1), B ( x 2 , y 2 , z 2 ) B(x_2,y_2,z_2) B(x2,y2,z2),两点之间的距离为 d = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 + ( z 1 − z 2 ) 2 d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2} d=(x1−x2)2+(y1−y2)2+(z1−z2)2
已知平面 Π : A x + B y + C z + D = 0 \Pi:Ax+By+Cz+D=0 Π:Ax+By+Cz+D=0,则点 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0)到平面的距离为
d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d=\frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2∣Ax0+By0+Cz0+D∣
平面 Π 1 : A x + B y + C z + D 1 = 0 \Pi_1:Ax+By+Cz+D_1=0 Π1:Ax+By+Cz+D1=0,平面 Π 2 : A x + B y + C z + D 2 = 0 \Pi_2:Ax+By+Cz+D_2=0 Π2:Ax+By+Cz+D2=0,两平面之间的距离为
d = ∣ D 2 − D 1 ∣ A 2 + B 2 + C 2 d=\frac{|D_2-D_1|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2∣D2−D1∣
点 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0),到直线 L : x − x 0 m = y − y 0 n = z − z 0 p L:\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} L:mx−x0=ny−y0=pz−z0的距离
1.方法一:
①过点 M 0 M_0 M0作垂直于直线 L L L的平面 Π : m ( x − x 0 ) + n ( y − y 0 ) + p ( z − z 0 ) = 0 \Pi:m(x-x_0)+n(y-y_0)+p(z-z_0)=0 Π:m(x−x0)+n(y−y0)+p(z−z0)=0
②求 Π \Pi Π和直线 L L L的交点 M 1 ( x 1 , y 1 , z 1 ) M_1(x_1,y_1,z_1) M1(x1,y1,z1),注:把直线转换为参数式带入平面方程得到 M 1 M_1 M1的坐标
③ d = ( x 1 − x 0 ) 2 + ( y 1 − y 0 ) 2 + ( z 1 − z 0 ) 2 d=\sqrt{(x_1-x_0)^2+(y_1-y_0)^2+(z_1-z_0)^2} d=(x1−x0)2+(y1−y0)2+(z1−z0)2
2.方法二:
任取直线上一点 M 1 ( x 1 , y 1 , z 1 ) M_1(x_1,y_1,z_1) M1(x1,y1,z1),连接 M 0 M 1 M_0M_1 M0M1,以 M 1 M_1 M1为起点作一条平行于直线的向量 M 1 A → = n ⃗ = ( m , n , p ) \overrightarrow{M_1A}=\vec n=(m,n,p) M1A=n=(m,n,p),由于 S △ M 0 M 1 A = 1 2 ⋅ ∣ M 1 A → × M 1 M 0 → ∣ = 1 2 ⋅ d ⋅ ∣ M 1 A → ∣ S_{\triangle{M_0M_1A}}=\frac{1}{2}\cdot|\overrightarrow{M_1A}\times\overrightarrow{M_1M_0}|=\frac{1}{2}\cdot d\cdot|\overrightarrow{M_1A}| S△M0M1A=21⋅∣M1A×M1M0∣=21⋅d⋅∣M1A∣因此 d = ∣ M 1 A → × M 1 M 0 → ∣ ∣ M 1 A → ∣ = ∣ n ⃗ × M 1 M 0 → ∣ ∣ n ⃗ ∣ d=\frac{|\overrightarrow{M_1A}\times\overrightarrow{M_1M_0}|}{|\overrightarrow{M_1A}|}=\frac{|\vec n\times\overrightarrow{M_1M_0}|}{|\vec n|} d=∣M1A∣∣M1A×M1M0∣=∣n∣∣n×M1M0∣
已知直线: L 1 : x − x 1 m 1 = y − y 1 n 1 = z − z 1 p 1 L_1:\frac{x-x_1}{m_1}=\frac{y-y_1}{n_1}=\frac{z-z_1}{p_1} L1:m1x−x1=n1y−y1=p1z−z1和 L 2 : x − x 2 m 2 = y − y 2 n 2 = z − z 2 p 2 L_2:\frac{x-x_2}{m_2}=\frac{y-y_2}{n_2}=\frac{z-z_2}{p_2} L2:m2x−x2=n2y−y2=p2z−z2,则直线上两点为 m 1 ( x 1 , y 1 , z 1 ) m_1(x_1,y_1,z_1) m1(x1,y1,z1)和 m 2 ( x 2 , y 2 , z 2 ) m_2(x_2,y_2,z_2) m2(x2,y2,z2)
L 1 L_1 L1和 L 2 L_2 L2共面的充要条件为: L ⃗ 1 × L ⃗ 2 ⋅ m 1 m 2 → = 0 \vec L_1 \times \vec L_2 \cdot \overrightarrow{m_1m_2}=0 L1×L2⋅m1m2=0
L 1 L_1 L1和 L 2 L_2 L2异面的充要条件为: L ⃗ 1 × L ⃗ 2 ⋅ m 1 m 2 → ≠ 0 \vec L_1 \times \vec L_2 \cdot \overrightarrow{m_1m_2} \neq 0 L1×L2⋅m1m2̸=0
当两直线异面时,需要转化为两直线共面的问题来解答
①过 m 1 m_1 m1做平行于 L 2 L_2 L2的直线 L 2 ′ L_2' L2′
②求 m 2 m_2 m2到直线 L 2 ′ L_2' L2′之间的距离 d d d
③求两共面直线的距离可以转化为求点到直线的距离的问题。
注:上图中求 m 2 m_2 m2到直线 L 2 ′ L_2' L2′的距离即可使用上述第二种方法用 L 2 ′ L_2' L2′的方向向量 n ⃗ = ( m 2 , n 2 , p 2 ) × m 1 m 2 → \vec n=(m_2,n_2,p_2)\times \overrightarrow{m_1m_2} n=(m2,n2,p2)×m1m2再除以 ∣ n ⃗ ∣ |\vec n| ∣n∣