集合类库是Java的一个重大突破,方便了我们对大数据的操作。其中 Arrays 和 Collections 工具类可以帮助我们快速操作集合类库。下面对Java集合类库的源码分析是基于jdk1.7的。今天我们来看看ArrayList的底层实现原理。
ArrayList的继承结构图
继承自 AbstractList 抽象类,在上层是 AbstractCollection 抽象类,直接去 AbstractCollection 类去看看。
AbstractCollection 类主要实现了 Collection 接口 和 Iterable 接口。Java 中的集合框架都是由 Collection 接口 和 Map 接口的实现类所构成的。
先看看 Collection 接口。
public interface Collection<E> extends Iterable<E>
继承了 Iterable 接口,跟进去看看 Iterable 接口。
package java.lang;
import java.util.Iterator;
/**
* Implementing this interface allows an object to be the target
* of the "foreach" statement.
*
* @param the type of elements returned by the iterator
*
* @since 1.5
*/
public interface Iterable {
/**
* Returns an iterator over a set of elements of type T.
*
* @return an Iterator.
*/
Iterator iterator();
}
代码很少,只有一个方法 iterator(),返回一个迭代器对象 Iterator。至于迭代器等会再看,我们先回到 Collection 接口,看看其中的方法。主要有以下方法:
1.int size() -- 集合的大小
2.boolean isEmpty() -- 集合是否为空
3.boolean contains(Object o) -- 集合是否包含指定的元素
4.boolean add(E e) -- 添加一个元素到集合
5.boolean remove(Object o) -- 把某个元素从集合中移除
6.boolean addAll(Collection extends E> c) -- 将一个集合中的所有元素加到此集合中
7.boolean removeAll(Collection> c) -- 从此集合中删除另一个集合中的元素
8.boolean retainAll(Collection> c) -- 保留集合中共有的元素(并集)
9.void clear() -- 清空集合
10.Object[] toArray() -- 将集合转化为数组
11. T[] toArray(T[] a) -- 将集合转化为指定类型的数组,更进一步说,此方法允许对输出数组的运行时类型进行精确控制,并且在某些情况下,可以用来节省分配开销。
12.boolean containsAll(Collection> c) -- 判断此集合是否包含指定集合中的元素
13.Iterator iterator() -- 返回一个迭代器对象,从Iterable接口继承过来的。
14.boolean equals(Object o)
15.int hashCode()
这就是 Collection 接口中的方法,ArrayList 属于集合类库,肯定会实现 Collection 接口中的方法,只是有的方法可能有它的抽象父类 AbstractList 类或者 AbstractCollection 类实现,现在我们来看看 ArrayList 的具体实现。
首先,我们来看下ArrayList的构造方法:
public ArrayList(int initialCapacity) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: " + initialCapacity);
this.elementData = new Object[initialCapacity];
}
public ArrayList() {
this(10);
}
public ArrayList(Collection extends E> c) {
elementData = c.toArray();
size = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
}
有三个构造方法,我们通常用的是无参的构造方法来生成一个ArrayList对象。无参的构造器其实生成了一个长度为10的空的List列表,this(10)其实调用了 ArrayList(int initialCapacity) 这个构造方法,如果初始化的列表容量大小小于0,则抛出非法的参数异常。默认的初始化大小为10,不满足判断条件,往下走:
this.elementData = new Object[initialCapacity];
表明生成一个长度为initialCapacity大小的elementData数组,所以ArrayList的底层是以数组形式来实现的。其中elementData对象是Object类型的数组,所以ArrayList能存放任何类型的对象。那我们就可以得出平时我们通过 ArrayList list = new ArrayList() 代码,其实是生成了一个长度为10的Object类型的空数组。
在看下第三个构造方法 ArrayList(Collection < ? extends E > c),传入一个 Collection 接口对象。用toArray()方法把集合转化为数组赋值给elementData数组。然后更改现在集合的大小,其中的size就是数组中元素的个数,也是集合的大小。再判断elementData的类型是不是Object[]类型,如果不是,则通过Arrays.copyOf()方法来复制数组,重新赋值给elementData对象。
private transient Object[] elementData;
private int size;
这是ArrayList2个主要的全局变量,一个是维护的数组,一个是数组中元素的个数。
添加
数组的长度是有限制的,那ArrayList是怎么实现自动扩容的呢?对于集合,最重要的莫过如增删改查操作。Collection接口提供了一个add(E e)方法,ArrayList除了现在了这个方法,还重载了一个add(int index, E element)方法。
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
add(E e)的实现很简单,调用了ensureCapacityInternal()方法。然后elementData[size++]中的元素指向e,size是一个全局变量,初始化为0,所以就是elementData数组的第一个元素为e,添加完之后,size大小变为1,就是数组中的元素个数为1了。添加成功返回true。
add()中的ensureCapacityInternal()方法是干嘛的呢?看名字是确保内部容量,可能跟扩大数组容量有关,来看看。
private void ensureCapacityInternal(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
modCount++ 是修改集合的次数,主要是给iterator迭代器哎用的,这个后面再分析。
if (minCapacity - elementData.length > 0)对于这个判断条件,我们刚进来传入的参数是size+1,初始size为0,那么minCapacity值就是1,elementData.length的值也就是数组的长度,初始化为10,判断条件不成立,所以不会走grow(minCapacity)这个方法。
当我们要添加第11个元素是,这时size是10,则minCapacity为11,判断条件成立,进入grow(minCapacity)方法。跟进去看看grow()方法。
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
这个方法就是ArrayList的扩容方法,终于找到了,不容易~分析下这个方法
oldCapacity为现在的数组长度
int newCapacity = oldCapacity + (oldCapacity >> 1)。oldCapacity >> 1是一个移位操作,也就是把oldCapacity除以2的意思,然后再加上oldCapacity值赋值给newCapacity变量,这段代码的意思就是新的数组长度为原来的1.5倍。
if (newCapacity - minCapacity < 0)对于这个判断条件就很奇怪了,新的数组大小肯定会大于size+1的值?为什么会有这个判断呢?难道你忘了,我们可以指定生成的ArrayList的大小,如果我们初始化一个长度为0的数组,这时newCapacity 值为0,minCapacity值为1,判断条件就成立了,所以会把minCapacity赋值为新的数组大小,好精巧的代码~
if (newCapacity - MAX_ARRAY_SIZE > 0) 这个判断条件是针对大容量的集合了,只需记住ArrayList的最大的容量为2的31次方就行了。
最后通过Arrays.copyOf()方法把老的数组复制到长度为newCapacity的新数组中,赋值给elementData对象。这就是ArrayList的扩容过程。顺便说一句,以前的扩容机制是int newCapacity = (oldCapacity * 3)/2 + 1,也就是1.5被+1。现在直接是1.5倍了。
再去看看重载的add(int index, E element)方法。
public void add(int index, E element) {
rangeCheckForAdd(index);
ensureCapacityInternal(size + 1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,size - index);
elementData[index] = element;
size++;
}
首先调用rangeCheckForAdd()方法,范围检查,来跟进一下这个方法:
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
如果我们插入的位置大于存在的元素个数或者小于0,抛出一个数组越界的异常。
剩下的步骤就和add(E e)方法差不多了,主要有一个System.arraycopy()方法,从指定数组中复制一个数组,复制从指定的位置开始,到目标数组的指定位置结束。
至于addAll()也是一样的,通过System.arraycopy()来复制数组,就不细说了。
删除
ArrayList也重写了remove(Object o)方法,还重载了一个remove(int index)方法。用于我们来删除元素。
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
如果要删除的是一个空对象,先循环遍历这个数组,找到数组中为空的元素,调用fastRemove()方法删除。
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,numMoved);
elementData[--size] = null; // Let gc do its work
}
这是一个私有的方法,numMoved 变量表示数组要开始变化的位置,还是通过System.arraycopy()来赋值数组,最后将数组中最后一个元素变为null,等待gc回收。
如果删除一个非空对象,循环遍历数组,通过对象的equal()方法,找到相等的元素,调用fastRemove()方法删除。
删除成功返回true,删除失败返回false。
所以最终删除元素的还是fastRemove()方法,我们也知道了如果通过对象来删除元素的话,就必须要重写对象的equal()方法,因为ArrarList的删除方法是通过equal()方法来比较对象相等的。
再来看看重载的remove(int index)方法。
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work
return oldValue;
}
首先,是一个范围检查rangeCheck()方法。
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
如果删除的索引超出列表大小,则抛出数组越界异常。
通过索引,直接找到elementData数组中该位置的元素,然后跟fastRemove()方法一样的操作来删除元素,最后返回被删除的元素。
修改
ArrayList中修改元素通过 set(int index, E element)方法,这是List特有的,不是从Collection接口得到的。
public E set(int index, E element) {
rangeCheck(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
首先有个范围检查,然后就是elementData()方法,来看看这个方法。
E elementData(int index) {
return (E) elementData[index];
}
代码很少,就是返回指定位置的元素。set()方法就是先得到指定位置的元素,在把该元素替换成药更改的元素,这是这样简单~
查询
要得到某个指定位置元素,可以通过get(int index) 方法。至于怎样实现的?肯定是调用上面的elementData()方法,得到指定位置的元素,不过别忘了要注意范围检查的。
public E get(int index) {
rangeCheck(index);
return elementData(index);
}
对于查询,还提供了2个赋值的方法indexOf(Object o)和lastIndexOf(Object o),得到指定元素的位置。具体分析看源码很快就能明白,肯定是遍历数组,找到相等的元素(通过equal()),返回下标,区别是一个正序,一个倒序。
常用方法的实现
size()方法:返回数组中元素的个数,就是集合的大小
public int size() {
return size;
}
clear()方法:遍历数组,每个元素赋值为空,size大小更改为0。
public void clear() {
modCount++;
// Let gc do its work
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
isEmpty()方法:直接判断size是不是等于0。
public boolean isEmpty() {
return size == 0;
}
toArray()方法:直接通过Arrays.copyOf()来实现数组的赋值。
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
至于 iterator()方法和listIterator()方法,将在分析迭代器的时候,对各种集合的迭代器一起分析。
当然,还有一些方法没有分析,大家如果去看下源码,都是通过差不多的原理来实现的,这里就不再追叙了。
为什么我们常说 ArrayList 的查询很快,而插入操作效率很低?LinedList的查询效率低,而插入操作很方便?为什么Set中没有重复的元素?他们是通过怎样的方法来迭代遍历元素的?底层到底是怎样实现的?下期继续分析。
下面是ArrayList的源码,不算太长,贴出来看看。
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
package java.util;
/**
* Resizable-array implementation of the List interface. Implements
* all optional list operations, and permits all elements, including
* null. In addition to implementing the List interface,
* this class provides methods to manipulate the size of the array that is
* used internally to store the list. (This class is roughly equivalent to
* Vector, except that it is unsynchronized.)
*
* The size, isEmpty, get, set,
* iterator, and listIterator operations run in constant
* time. The add operation runs in amortized constant time,
* that is, adding n elements requires O(n) time. All of the other operations
* run in linear time (roughly speaking). The constant factor is low compared
* to that for the LinkedList implementation.
*
*
Each ArrayList instance has a capacity. The capacity is
* the size of the array used to store the elements in the list. It is always
* at least as large as the list size. As elements are added to an ArrayList,
* its capacity grows automatically. The details of the growth policy are not
* specified beyond the fact that adding an element has constant amortized
* time cost.
*
*
An application can increase the capacity of an ArrayList instance
* before adding a large number of elements using the ensureCapacity
* operation. This may reduce the amount of incremental reallocation.
*
*
Note that this implementation is not synchronized.
* If multiple threads access an ArrayList instance concurrently,
* and at least one of the threads modifies the list structurally, it
* must be synchronized externally. (A structural modification is
* any operation that adds or deletes one or more elements, or explicitly
* resizes the backing array; merely setting the value of an element is not
* a structural modification.) This is typically accomplished by
* synchronizing on some object that naturally encapsulates the list.
*
* If no such object exists, the list should be "wrapped" using the
* {@link Collections#synchronizedList Collections.synchronizedList}
* method. This is best done at creation time, to prevent accidental
* unsynchronized access to the list:
* List list = Collections.synchronizedList(new ArrayList(...));
*
*
* The iterators returned by this class's {@link #iterator() iterator} and
* {@link #listIterator(int) listIterator} methods are fail-fast:
* if the list is structurally modified at any time after the iterator is
* created, in any way except through the iterator's own
* {@link ListIterator#remove() remove} or
* {@link ListIterator#add(Object) add} methods, the iterator will throw a
* {@link ConcurrentModificationException}. Thus, in the face of
* concurrent modification, the iterator fails quickly and cleanly, rather
* than risking arbitrary, non-deterministic behavior at an undetermined
* time in the future.
*
*
Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw {@code ConcurrentModificationException} on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: the fail-fast behavior of iterators
* should be used only to detect bugs.
*
*
This class is a member of the
* @docRoot
}/../technotes/guides/collections/index.html">
* Java Collections Framework.
*
* @author Josh Bloch
* @author Neal Gafter
* @see Collection
* @see List
* @see LinkedList
* @see Vector
* @since 1.2
*/
public class ArrayList<E> extends AbstractList<E>
implements List, RandomAccess, Cloneable, java.io.Serializable
{
private static final long serialVersionUID = 8683452581122892189L;
/**
* The array buffer into which the elements of the ArrayList are stored.
* The capacity of the ArrayList is the length of this array buffer.
*/
private transient Object[] elementData;
/**
* The size of the ArrayList (the number of elements it contains).
*
* @serial
*/
private int size;
/**
* Constructs an empty list with the specified initial capacity.
*
* @param initialCapacity the initial capacity of the list
* @throws IllegalArgumentException if the specified initial capacity
* is negative
*/
public ArrayList(int initialCapacity) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
}
/**
* Constructs an empty list with an initial capacity of ten.
*/
public ArrayList() {
this(10);
}
/**
* Constructs a list containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException if the specified collection is null
*/
public ArrayList(Collection extends E> c) {
elementData = c.toArray();
size = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
}
/**
* Trims the capacity of this ArrayList instance to be the
* list's current size. An application can use this operation to minimize
* the storage of an ArrayList instance.
*/
public void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (size < oldCapacity) {
elementData = Arrays.copyOf(elementData, size);
}
}
/**
* Increases the capacity of this ArrayList instance, if
* necessary, to ensure that it can hold at least the number of elements
* specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
*/
public void ensureCapacity(int minCapacity) {
if (minCapacity > 0)
ensureCapacityInternal(minCapacity);
}
private void ensureCapacityInternal(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
/**
* The maximum size of array to allocate.
* Some VMs reserve some header words in an array.
* Attempts to allocate larger arrays may result in
* OutOfMemoryError: Requested array size exceeds VM limit
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* Increases the capacity to ensure that it can hold at least the
* number of elements specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
*/
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
/**
* Returns the number of elements in this list.
*
* @return the number of elements in this list
*/
public int size() {
return size;
}
/**
* Returns true if this list contains no elements.
*
* @return true if this list contains no elements
*/
public boolean isEmpty() {
return size == 0;
}
/**
* Returns true if this list contains the specified element.
* More formally, returns true if and only if this list contains
* at least one element e such that
* (o==null ? e==null : o.equals(e)).
*
* @param o element whose presence in this list is to be tested
* @return true if this list contains the specified element
*/
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
/**
* Returns the index of the first occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the lowest index i such that
* (o==null ? get(i)==null : o.equals(get(i))),
* or -1 if there is no such index.
*/
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* Returns the index of the last occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the highest index i such that
* (o==null ? get(i)==null : o.equals(get(i))),
* or -1 if there is no such index.
*/
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* Returns a shallow copy of this ArrayList instance. (The
* elements themselves are not copied.)
*
* @return a clone of this ArrayList instance
*/
public Object clone() {
try {
@SuppressWarnings("unchecked")
ArrayList v = (ArrayList) super.clone();
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}
/**
* Returns an array containing all of the elements in this list
* in proper sequence (from first to last element).
*
* The returned array will be "safe" in that no references to it are
* maintained by this list. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
*
This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this list in
* proper sequence
*/
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
/**
* Returns an array containing all of the elements in this list in proper
* sequence (from first to last element); the runtime type of the returned
* array is that of the specified array. If the list fits in the
* specified array, it is returned therein. Otherwise, a new array is
* allocated with the runtime type of the specified array and the size of
* this list.
*
* If the list fits in the specified array with room to spare
* (i.e., the array has more elements than the list), the element in
* the array immediately following the end of the collection is set to
* null. (This is useful in determining the length of the
* list only if the caller knows that the list does not contain
* any null elements.)
*
* @param a the array into which the elements of the list are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose.
* @return an array containing the elements of the list
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this list
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
// Positional Access Operations
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
/**
* Returns the element at the specified position in this list.
*
* @param index index of the element to return
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E get(int index) {
rangeCheck(index);
return elementData(index);
}
/**
* Replaces the element at the specified position in this list with
* the specified element.
*
* @param index index of the element to replace
* @param element element to be stored at the specified position
* @return the element previously at the specified position
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E set(int index, E element) {
rangeCheck(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
/**
* Appends the specified element to the end of this list.
*
* @param e element to be appended to this list
* @return true (as specified by {@link Collection#add})
*/
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
/**
* Inserts the specified element at the specified position in this
* list. Shifts the element currently at that position (if any) and
* any subsequent elements to the right (adds one to their indices).
*
* @param index index at which the specified element is to be inserted
* @param element element to be inserted
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public void add(int index, E element) {
rangeCheckForAdd(index);
ensureCapacityInternal(size + 1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
/**
* Removes the element at the specified position in this list.
* Shifts any subsequent elements to the left (subtracts one from their
* indices).
*
* @param index the index of the element to be removed
* @return the element that was removed from the list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work
return oldValue;
}
/**
* Removes the first occurrence of the specified element from this list,
* if it is present. If the list does not contain the element, it is
* unchanged. More formally, removes the element with the lowest index
* i such that
* (o==null ? get(i)==null : o.equals(get(i)))
* (if such an element exists). Returns true if this list
* contained the specified element (or equivalently, if this list
* changed as a result of the call).
*
* @param o element to be removed from this list, if present
* @return true if this list contained the specified element
*/
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
/*
* Private remove method that skips bounds checking and does not
* return the value removed.
*/
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work
}
/**
* Removes all of the elements from this list. The list will
* be empty after this call returns.
*/
public void clear() {
modCount++;
// Let gc do its work
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
/**
* Appends all of the elements in the specified collection to the end of
* this list, in the order that they are returned by the
* specified collection's Iterator. The behavior of this operation is
* undefined if the specified collection is modified while the operation
* is in progress. (This implies that the behavior of this call is
* undefined if the specified collection is this list, and this
* list is nonempty.)
*
* @param c collection containing elements to be added to this list
* @return true if this list changed as a result of the call
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(Collection extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
/**
* Inserts all of the elements in the specified collection into this
* list, starting at the specified position. Shifts the element
* currently at that position (if any) and any subsequent elements to
* the right (increases their indices). The new elements will appear
* in the list in the order that they are returned by the
* specified collection's iterator.
*
* @param index index at which to insert the first element from the
* specified collection
* @param c collection containing elements to be added to this list
* @return true if this list changed as a result of the call
* @throws IndexOutOfBoundsException {@inheritDoc}
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(int index, Collection extends E> c) {
rangeCheckForAdd(index);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
int numMoved = size - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
/**
* Removes from this list all of the elements whose index is between
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
* Shifts any succeeding elements to the left (reduces their index).
* This call shortens the list by {@code (toIndex - fromIndex)} elements.
* (If {@code toIndex==fromIndex}, this operation has no effect.)
*
* @throws IndexOutOfBoundsException if {@code fromIndex} or
* {@code toIndex} is out of range
* ({@code fromIndex < 0 ||
* fromIndex >= size() ||
* toIndex > size() ||
* toIndex < fromIndex})
*/
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// Let gc do its work
int newSize = size - (toIndex-fromIndex);
while (size != newSize)
elementData[--size] = null;
}
/**
* Checks if the given index is in range. If not, throws an appropriate
* runtime exception. This method does *not* check if the index is
* negative: It is always used immediately prior to an array access,
* which throws an ArrayIndexOutOfBoundsException if index is negative.
*/
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* A version of rangeCheck used by add and addAll.
*/
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* Constructs an IndexOutOfBoundsException detail message.
* Of the many possible refactorings of the error handling code,
* this "outlining" performs best with both server and client VMs.
*/
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
/**
* Removes from this list all of its elements that are contained in the
* specified collection.
*
* @param c collection containing elements to be removed from this list
* @return {@code true} if this list changed as a result of the call
* @throws ClassCastException if the class of an element of this list
* is incompatible with the specified collection
* (optional)
* @throws NullPointerException if this list contains a null element and the
* specified collection does not permit null elements
* (optional),
* or if the specified collection is null
* @see Collection#contains(Object)
*/
public boolean removeAll(Collection> c) {
return batchRemove(c, false);
}
/**
* Retains only the elements in this list that are contained in the
* specified collection. In other words, removes from this list all
* of its elements that are not contained in the specified collection.
*
* @param c collection containing elements to be retained in this list
* @return {@code true} if this list changed as a result of the call
* @throws ClassCastException if the class of an element of this list
* is incompatible with the specified collection
* (optional)
* @throws NullPointerException if this list contains a null element and the
* specified collection does not permit null elements
* (optional),
* or if the specified collection is null
* @see Collection#contains(Object)
*/
public boolean retainAll(Collection> c) {
return batchRemove(c, true);
}
private boolean batchRemove(Collection> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
if (w != size) {
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
}
/**
* Save the state of the ArrayList instance to a stream (that
* is, serialize it).
*
* @serialData The length of the array backing the ArrayList
* instance is emitted (int), followed by all of its elements
* (each an Object) in the proper order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject();
// Write out array length
s.writeInt(elementData.length);
// Write out all elements in the proper order.
for (int i=0; iif (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
/**
* Reconstitute the ArrayList instance from a stream (that is,
* deserialize it).
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in size, and any hidden stuff
s.defaultReadObject();
// Read in array length and allocate array
int arrayLength = s.readInt();
Object[] a = elementData = new Object[arrayLength];
// Read in all elements in the proper order.
for (int i=0; i/**
* Returns a list iterator over the elements in this list (in proper
* sequence), starting at the specified position in the list.
* The specified index indicates the first element that would be
* returned by an initial call to {@link ListIterator#next next}.
* An initial call to {@link ListIterator#previous previous} would
* return the element with the specified index minus one.
*
* The returned list iterator is fail-fast.
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public ListIterator listIterator(int index) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index);
return new ListItr(index);
}
/**
* Returns a list iterator over the elements in this list (in proper
* sequence).
*
* The returned list iterator is fail-fast.
*
* @see #listIterator(int)
*/
public ListIterator listIterator() {
return new ListItr(0);
}
/**
* Returns an iterator over the elements in this list in proper sequence.
*
* The returned iterator is fail-fast.
*
* @return an iterator over the elements in this list in proper sequence
*/
public Iterator iterator() {
return new Itr();
}
/**
* An optimized version of AbstractList.Itr
*/
private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size;
}
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
/**
* An optimized version of AbstractList.ListItr
*/
private class ListItr extends Itr implements ListIterator<E> {
ListItr(int index) {
super();
cursor = index;
}
public boolean hasPrevious() {
return cursor != 0;
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor - 1;
}
@SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[lastRet = i];
}
public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.set(lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void add(E e) {
checkForComodification();
try {
int i = cursor;
ArrayList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
/**
* Returns a view of the portion of this list between the specified
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
* {@code fromIndex} and {@code toIndex} are equal, the returned list is
* empty.) The returned list is backed by this list, so non-structural
* changes in the returned list are reflected in this list, and vice-versa.
* The returned list supports all of the optional list operations.
*
* This method eliminates the need for explicit range operations (of
* the sort that commonly exist for arrays). Any operation that expects
* a list can be used as a range operation by passing a subList view
* instead of a whole list. For example, the following idiom
* removes a range of elements from a list:
*
* list.subList(from, to).clear();
*
* Similar idioms may be constructed for {@link #indexOf(Object)} and
* {@link #lastIndexOf(Object)}, and all of the algorithms in the
* {@link Collections} class can be applied to a subList.
*
* The semantics of the list returned by this method become undefined if
* the backing list (i.e., this list) is structurally modified in
* any way other than via the returned list. (Structural modifications are
* those that change the size of this list, or otherwise perturb it in such
* a fashion that iterations in progress may yield incorrect results.)
*
* @throws IndexOutOfBoundsException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public List subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, 0, fromIndex, toIndex);
}
static void subListRangeCheck(int fromIndex, int toIndex, int size) {
if (fromIndex < 0)
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
if (toIndex > size)
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > toIndex(" + toIndex + ")");
}
private class SubList extends AbstractList<E> implements RandomAccess {
private final AbstractList parent;
private final int parentOffset;
private final int offset;
int size;
SubList(AbstractList parent,
int offset, int fromIndex, int toIndex) {
this.parent = parent;
this.parentOffset = fromIndex;
this.offset = offset + fromIndex;
this.size = toIndex - fromIndex;
this.modCount = ArrayList.this.modCount;
}
public E set(int index, E e) {
rangeCheck(index);
checkForComodification();
E oldValue = ArrayList.this.elementData(offset + index);
ArrayList.this.elementData[offset + index] = e;
return oldValue;
}
public E get(int index) {
rangeCheck(index);
checkForComodification();
return ArrayList.this.elementData(offset + index);
}
public int size() {
checkForComodification();
return this.size;
}
public void add(int index, E e) {
rangeCheckForAdd(index);
checkForComodification();
parent.add(parentOffset + index, e);
this.modCount = parent.modCount;
this.size++;
}
public E remove(int index) {
rangeCheck(index);
checkForComodification();
E result = parent.remove(parentOffset + index);
this.modCount = parent.modCount;
this.size--;
return result;
}
protected void removeRange(int fromIndex, int toIndex) {
checkForComodification();
parent.removeRange(parentOffset + fromIndex,
parentOffset + toIndex);
this.modCount = parent.modCount;
this.size -= toIndex - fromIndex;
}
public boolean addAll(Collection extends E> c) {
return addAll(this.size, c);
}
public boolean addAll(int index, Collection extends E> c) {
rangeCheckForAdd(index);
int cSize = c.size();
if (cSize==0)
return false;
checkForComodification();
parent.addAll(parentOffset + index, c);
this.modCount = parent.modCount;
this.size += cSize;
return true;
}
public Iterator iterator() {
return listIterator();
}
public ListIterator listIterator(final int index) {
checkForComodification();
rangeCheckForAdd(index);
final int offset = this.offset;
return new ListIterator() {
int cursor = index;
int lastRet = -1;
int expectedModCount = ArrayList.this.modCount;
public boolean hasNext() {
return cursor != SubList.this.size;
}
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= SubList.this.size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[offset + (lastRet = i)];
}
public boolean hasPrevious() {
return cursor != 0;
}
@SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[offset + (lastRet = i)];
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor - 1;
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
SubList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.set(offset + lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void add(E e) {
checkForComodification();
try {
int i = cursor;
SubList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification() {
if (expectedModCount != ArrayList.this.modCount)
throw new ConcurrentModificationException();
}
};
}
public List subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, offset, fromIndex, toIndex);
}
private void rangeCheck(int index) {
if (index < 0 || index >= this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private void rangeCheckForAdd(int index) {
if (index < 0 || index > this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+this.size;
}
private void checkForComodification() {
if (ArrayList.this.modCount != this.modCount)
throw new ConcurrentModificationException();
}
}
}