ACM学习感悟——HDU1204


Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
 

Input
Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.
 

Output
Output the maximal summation described above in one line.
 

Sample Input
 
   
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 

Sample Output
6
8

这道题还是有点让我头疼的,主要是状态转移方程有点让人费解:dp[i][j]=MAX(dp[i][j-1] , dp[i-1][k])+data[j] 其中i
///////////////////////////////////////////////////////// 
//   HDU  2844     dp                                  //                        //
//  Created by 吴尔立 			                       //
//  Copyright (c) 2015年 吴尔立. All rights reserved.  //
/////////////////////////////////////////////////////////
#include 
#include 
#include 
#include 
#include            
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define ll long long;
#define INF 1<<31
#define cir(i,a,b)  for (int i=a;i<=b;i++)
#define CIR(j,a,b)  for (int j=a;j>=b;j--)
#define CLR(x) memset(x,0,sizeof(x))
using namespace std;
#define maxn 1000005
int n,m;
int a[maxn],d[maxn],td[maxn];           //td表示前一个状态的最大值; d[j]表示前j个元素分成i段的最大值 

int main()
{
	while (scanf("%d%d",&m,&n)!=EOF)
	{
		CLR(d);
		CLR(td);
		cir(i,1,n) scanf("%d",&a[i]);
		int temp;
		cir(i,1,m)
		{
			temp=-INF;
			cir(j,i,n)
			{
				d[j]=max(d[j-1],td[j-1])+a[j];    //这里有点难以理解,若是d+a[i],则代表是将ai并上去,否则是独立成一段。
				td[j-1]=temp;    //temp一直表示前一个状态的最大值。
				temp=max(temp,d[j]);
			} 
		}
		printf("%d\n",temp);
	}
}


你可能感兴趣的:(ACM学习感悟——HDU1204)