- CBNet--一种新的目标检测的复合骨干网体系结构
weixin_45963617
深度学习系列
一、Introduction一般来说,在一个典型的基于CNN的目标检测器中,使用主干网络来提取检测对象的基本特征,该网络通常是为图像分类任务而设计的,并在ImageNet上预训练。毫无疑问,更强大的主干网可以带来更好的检测性能。尽管最先进的基于深度的大骨干网络的探测器取得了很好的结果,但仍有很大改进空间。此外,通过设计一个新的更强大的主干网络并在ImageNet上预训练来获取好的检测性能是十分昂贵
- 如何使用YOLOv8在AI-TOD数据集上进行遥感目标检测,从安装依赖项、准备数据集、配置YOLOv8、训练和评估模型以及构建GUI应用程序展示检测
计算机C9硕士_算法工程师
人工智能YOLO目标检测遥感
如何使用YOLOv8在AI-TOD数据集上进行遥感目标检测,从安装依赖项、准备数据集、配置YOLOv8、训练和评估模型以及构建GUI应用程序展示检测文章目录1.安装依赖2.数据准备3.配置YOLOv83.1加载预训练模型或自定义模型4.训练模型5.评估模型6.构建GUI应用程序(可选)以下文字及代码仅供参考。遥感目标检测,AI-TOD数据集aitod,训练集11214张,测试集集14018,验证集
- Yolo系列之Yolo的基本理解
是十一月末
YOLOpython开发语言yolo
YOLO的基本理解目录YOLO的基本理解1YOLO1.1概念1.2算法2单、多阶段对比2.1FLOPs和FPS2.2one-stage单阶段2.3two-stage两阶段1YOLO1.1概念YOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位
- 深度学习与目标检测系列(六) 本文约(4.5万字) | 全面解读复现ResNet | Pytorch |
小酒馆燃着灯
深度学习目标检测pytorch人工智能ResNet残差连接残差网络
文章目录解读Abstract—摘要翻译精读主要内容Introduction—介绍翻译精读背景RelatedWork—相关工作ResidualRepresentations—残差表达翻译精读主要内容ShortcutConnections—短路连接翻译精读主要内容DeepResidualLearning—深度残差学习ResidualLearning—残差学习翻译精读ResNet目的以前方法本文改进本质
- 深度学习与目标检测系列(三) 本文约(4万字) | 全面解读复现AlexNet | Pytorch |
小酒馆燃着灯
深度学习目标检测pytorchAlexNet人工智能
文章目录解读Abstract-摘要翻译精读主要内容1.Introduction—前言翻译精读主要内容:本文主要贡献:2.TheDataset-数据集翻译精读主要内容:ImageNet简介:图像处理方法:3.TheArchitecture—网络结构3.1ReLUNonlinearity—非线性激活函数ReLU翻译精读传统方法及不足本文改进方法本文的改进结果3.2TrainingonMultipleG
- 常见经典目标检测算法
109702008
人工智能#深度学习目标检测人工智能
ChatGPT目标检测(ObjectDetection)是计算机视觉领域的一个重要分支,其目的是识别数字图像中的不同对象,并给出它们的位置和类别。近年来,许多经典的目标检测算法被提出并广泛应用。以下是一些常见的经典目标检测算法:1.R-CNN(RegionswithCNNfeatures):R-CNN通过使用区域提议方法(如选择性搜索)首先生成潜在的边界框,然后使用卷积神经网络(CNN)提取特征,
- 目标检测中归一化的目的?
林语微光
kaggle目标检测目标跟踪人工智能
在目标检测任务中,归一化坐标和尺寸时需要除以图像的宽度和高度,主要有以下几个原因:1.统一尺度不同图像可能具有不同的宽度和高度。通过将坐标和尺寸除以图像的宽度和高度,可以将所有图像的标注信息统一到相同的尺度范围([0,1])。这使得模型在训练和推理时能够处理任意尺寸的图像,而不需要关心图像的具体像素尺寸。2.位置和尺寸的相对性归一化后的坐标和尺寸是相对于图像尺寸的,而不是绝对像素值。这种相对性使得
- YOLO魔改之频率分割模块(FDM)
清风AI
YOLO算法魔改系列YOLO人工智能计算机视觉目标检测python深度学习
目标检测原理目标检测是一种将目标分割和识别相结合的图像处理技术,旨在从图像中定位并识别特定目标。深度学习方法,如FasterR-CNN和YOLO系列,已成为主流解决方案。这些方法通常采用两阶段或单阶段策略,通过卷积神经网络(CNN)提取特征并进行分类和定位。在小目标检测中,为克服分辨率低和特征不明显的问题,模型设计中会特别注重特征融合和多尺度处理,以增强对小目标的感知能力。YOLOv8基础YOLO
- 目标检测YOLO实战应用案例100讲-基于毫米波雷达与摄像头协同的道路目标检测与识别(续)
林聪木
目标检测YOLO人工智能
目录3.2实测数据采集与分析3.2.1回波数据处理3.2.2毫米波雷达数据采集实验3.3基于传统图像特征的目标识别算法3.3.1基于灰度共生矩阵的时频图特征提取3.3.2支持向量机分类器3.3.3实验及结果分析3.4基于卷积神经网络的目标识别算法3.4.1卷积神经网络的基本理论3.4.2卷积神经网络框架设计3.4.3实验及结果分析基于图像的目标检测算法4.1目标检测算法一般流程4.2典型目标检测算
- Python 的 ultralytics 库详解
白.夜
人工智能
ultralytics是一个专注于计算机视觉任务的Python库,尤其以YOLO(YouOnlyLookOnce)系列模型为核心,提供了简单易用的接口,支持目标检测、实例分割、姿态估计等任务。本文将详细介绍ultralytics库的功能、安装方法、核心模块以及使用示例。1.ultralytics库简介ultralytics库由Ultralytics团队开发,旨在为YOLO系列模型提供高效、灵活且易
- 【保姆级视频教程(一)】YOLOv12环境配置:从零到一,手把手保姆级教程!| 小白也能轻松玩转目标检测!
一只云卷云舒
YOLOv12保姆级通关教程YOLOYOLOv12flashattentionGPU计算能力算力
【2025全站首发】YOLOv12环境配置:从零到一,手把手保姆级教程!|小白也能轻松玩转目标检测!文章目录1.FlashAttentionWindows端WHL包下载1.1简介1.2下载链接1.3国内镜像站1.4安装方法2.NVIDIAGPU计算能力概述2.1简介2.2计算能力版本与GPU型号对照表2.2.1CUDA-EnabledDatacenterProducts2.2.2CUDA-Enab
- yolov8的第一次实验报告
算法宇宙
YOLO人工智能计算机视觉
1.实验概述实验名称:占道经营目标检测模型实验目标:提高模型的精确率(Precision)和召回率(Recall),使其接近1。实验日期:[2025-01-16]2.数据集数据集名称:[datasets]数据集大小:[2.68Gb]数据集描述:[数据集主要分两个类别:zdjy_ld,zdjy_gd]注释:占道经营流动,占道经营固定3.模型配置3.1基础配置·模型类型:YOLOv8·预训练模型:YO
- YOLOv8 的简介 及C#中如何简单应用YOLOv8
码上有潜
YOLOv8YOLO
YOLOv8是YOLO(YouOnlyLookOnce)系列中的最新版本,是一种用于目标检测和图像分割的深度学习模型。YOLO模型以其快速和准确的目标检测性能而著称,广泛应用于实时应用程序中。主要特点高效性:YOLOv8在保持高检测速度的同时,进一步提高了检测精度。端到端训练:可以直接从图像输入端到分类结果输出,简化了训练和部署过程。改进的架构:包括更深的网络结构、更复杂的特征提取方法以及更高效的
- Yolov11目标检测(ultralytics)
@M_J_Y@
目标检测YOLO目标检测人工智能
Yolov11目标检测(ultralytics)1.克隆仓库2.安装环境依赖3.训练、验证、推理以及onnx模型导出1.克隆仓库从官网下载Yolov11到本地。
[email protected]:ultralytics/ultralytics.git2.安装环境依赖pipinstall-e.-ihttps://pypi.mirrors.ustc.edu.cn/simple/3.训练、验证
- 使用 labelImg 制作YOLO系列目标检测数据集(
2401_89791028
YOLO目标检测人工智能
文章转载自K同学,谨防原文失效可参考link1和link2和link3LabelImg介绍LabelImg支持文件夹的导入,在标完一张后,在左侧选择NextImage就可以切换到下一张继续了。输出格式部分,目前LabelImg支持YOLO和PascalVOC2种格式,前者标签文件后缀是.txt件,而后者标签文件后缀是.xml件。标签保存在对应的labels文件夹下,与images中的图片文件名一一
- YOLOv8 改进:添加 GAM 注意力机制
鱼弦
人工智能时代YOLO
YOLOv8改进:添加GAM注意力机制引言在目标检测领域,YOLO(YouOnlyLookOnce)网络因其速度和准确性被广泛应用。然而,随着场景的复杂化,仅仅依靠卷积特征可能不足以捕捉图像中的重要信息。引入注意力机制,如GAM(GlobalAttentionMechanism),可以有效提高模型对关键区域的关注,从而提升检测性能。技术背景GAM是一种全局注意力机制,通过全局信息聚合和自适应权重分
- 【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?
努力毕业的小土博^_^
AI算法题库人工智能计算机视觉算法深度学习神经网络目标检测
【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?文章目录【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?前言多尺度训练核心思想:优点与注意点:多尺度测试核心思想:优点与注意点:综合作用参考示例总结欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上
- 从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(2)消息队列与消息中间件
shiter
人工智能系统解决方案与技术架构人工智能深度学习音视频
文章大纲原始视频队列Python内存视频缓存优化方案(4GB以内)一、核心参数设计二、内存管理实现三、性能优化策略四、内存占用验证五、高级优化技巧六、部署建议检测结果队列YOLO检测结果队列技术方案一、技术选型矩阵二、核心实现代码三、性能优化策略四、可视化方案对比五、部署建议逻辑判定队列时间片图论时间序列大模型引入参考文献原始视频队列想要在单机内存中缓存1-5分钟的视频片段,python技术栈的话
- YOLOv5+UI界面在车辆检测中的应用与实现
深度学习&目标检测实战项目
YOLOv5实战项目YOLOui分类数据挖掘目标跟踪人工智能
1.引言随着智能交通系统(ITS)的快速发展,车辆检测已成为计算机视觉领域的重要研究方向。车辆检测技术广泛应用于交通流量监控、车辆违章抓拍、无人驾驶等场景中。近年来,深度学习技术的突破,特别是卷积神经网络(CNN)的崛起,使得目标检测技术取得了显著进展。其中,YOLO(YouOnlyLookOnce)系列模型以其高效的实时检测能力和出色的性能成为车辆检测领域的首选方法之一。在本文中,我们将基于YO
- YOLO优化之扫描融合模块(SimVSS Block)
清风AI
人工智能计算机视觉YOLO目标检测深度学习目标跟踪
研究背景在自动驾驶技术快速发展的背景下,目标检测作为其核心组成部分面临着严峻挑战。驾驶场景中目标尺度和大小的巨大差异,以及视觉特征不显著且易受噪声干扰的问题,对辅助驾驶系统的安全性构成了潜在威胁。传统的卷积神经网络(CNN)虽然在目标检测领域取得了显著进展,但仍存在局限性,如局部关注性导致难以有效检测不同尺度的目标。为克服这些问题,研究人员开始探索将状态空间模型(SSM)引入目标检测领域,以期提高
- 深入探究YOLO系列的骨干网路
编码实践
YOLO深度学习计算机视觉
深入探究YOLO系列的骨干网路YOLO系列是目标检测领域中非常知名的算法。其通过将整个图像作为输入,并且直接在图像上通过一个单独的神经网络输出每个检测框的类别预测和边界框信息。为了更好地理解YOLO系列,我们需要先了解它所使用的骨干网路。骨干网络是深度学习模型中的核心部分,负责提取图像的特征。如今常用的骨干网络有VGG、ResNet和MobileNet等。YOLO系列算法采用的是Darknet骨干
- 《Hello YOLOv8从入门到精通》4, 模型架构和骨干网络Backbone调优实践
Jagua
YOLO
YOLOv8是由Ultralytics开发的最先进的目标检测模型,其模型架构细节包括骨干网络(Backbone)、颈部网络(Neck)和头部网络(Head)三大部分。一、骨干网络(Backbone)Backbone部分负责特征提取,采用了一系列卷积和反卷积层,同时使用了残差连接和瓶颈结构来减小网络的大小并提高性能。YOLOv8的Backbone参考了CSPDarkNet结构,的增强版本,并结合了其
- NPU的应用场景:从云端到边缘
绿算技术
NPU架构介绍缓存人工智能科技深度学习
NPU的应用场景非常广泛,主要包括以下几个方面:1.云计算与数据中心AI推理服务:在云端提供高效的AI推理服务,例如图像识别、语音识别。模型训练加速:在大规模训练任务中,NPU可以作为加速单元,提升训练效率。2.边缘计算智能摄像头:在安防监控中,NPU可以实时处理视频流,实现目标检测和跟踪。智能音箱:在语音助手中,NPU可以加速语音识别和自然语言处理任务。3.自动驾驶实时感知:NPU可以加速自动驾
- 目标检测中衡量模型速度和精度的指标:FPS和mAP
asdfg1258963
目标检测_ai目标检测人工智能
“FPS”和“mAP”分别衡量了模型的速度和精度。FPS(FramesPerSecond)定义:FPS是“每秒传输帧数”的缩写,用于衡量计算机视觉系统(如目标检测、图像识别等)的实时性能。它表示系统每秒钟能够处理的图像或视频帧的数量。重要性:在实时应用中,如自动驾驶、视频监控等,FPS是一个关键指标。高FPS意味着系统能够快速处理输入的图像数据,实现实时响应。计算方式:FPS可以通过以下公式计算:
- 机器学习(二) 本文(2.5万字) | KNN算法原理及Python复现 |
小酒馆燃着灯
机器学习算法k近邻算法
文章目录一KNN算法原理二KNN三要素三机器学习中标准化四KNN分类预测规则五KNN回归预测规则六KNN算法实现方式七KDTree7.1构造KDtree7.2KDtree查找最近邻八KNN特点九KNN算法实现案例一案例二1.机器学习2.深度学习与目标检测3.YOLOv54.YOLOv5改进5.YOLOv8及其改进6.Python与PyTorch7.工具8.小知识点9.杂记一KNN算法原理K近邻分类
- 基于分组 NMS 的检测模型后处理改进
Lunar*
目标检测算法与优化目标检测深度学习python
引言在目标检测任务中,后处理阶段的非极大值抑制(Non-MaximumSuppression,NMS)是至关重要的一环,主要用于去除高度重叠的冗余预测框。然而,在某些场景中,不同类别的目标可能会被网络同时预测为多个相近的类别,例如:交通工具检测场景:同一辆车可能被误检测为“自行车”和“电动车”。动物检测场景:同一只动物可能被误检测为“狼”和“狗”。家电检测场景:同一台设备可能被误检测为“微波炉”和
- 3.13 YOLO V3
不要不开心了
机器学习pytorch深度学习
今天的内容为YOLO-V3YOLO系列-YOLO-V3,最大的改进就是网络结构,使其更适合小目标检测。-特征做得更细致,融入多持续特征图信息来预测不同规格物体。-先验框更丰富了,3种scale,每种3个规格,一共9种。-softmax改进,预测多标签任务。-多scale-为了能检测到不同大小的物体,设计了3个scale。-scale变换经典方法-左图:图像金字塔;右图:单一的输入。-scale变换
- 基于YOLOv5的车牌识别系统:从数据集到UI界面的实现
深度学习&目标检测实战项目
YOLOv5实战项目YOLOui分类数据挖掘目标跟踪
1.引言随着智能交通系统的发展,车牌识别技术已成为交通管理、停车场自动化、路面监控等应用中的关键技术之一。车牌识别系统(LicensePlateRecognition,LPR)主要用于识别车辆的车牌号码,并将其转化为可以进一步处理的数据。车牌识别系统通常由图像处理、字符识别、目标检测等多种技术组成。近年来,随着深度学习技术的飞速发展,基于卷积神经网络(CNN)的目标检测算法,如YOLO(YouOn
- 点云从入门到精通技术详解100篇-基于激光雷达点云的三维目标检测
格图素书
目标检测人工智能计算机视觉
目录前言图像目标检测算法研究现状点云目标检测算法研究现状基于投影图的方法基于体素的方法基于点云的多模态融合方法2地面点云滤波及神经网络2.1目标检测数据集及采集设备2.1.1KITTI数据集2.1.2车载激光雷达2.2地面点云滤波算法2.2.1RANSAC算法2.2.2CSF算法本文篇幅较长,分为上下两篇,下篇详见基于激光雷达点云的三维目标检测(续)前言近几年来,在计算机视觉领域,利用深度学习卷积
- 【YOLOv11[基础]】目标检测OD | 导出ONNX模型 | ONN模型推理以及检测结果可视化 | python
Jackilina_Stone
【改进】YOLO系列人工智能python计算机视觉YOLO深度学习目标检测
本文将导出YOLO11.pt模型对应的ONNX模型,并且使用ONNX模型推理以及结果的可视化。话不多说,先看看效果图吧!!!目录一导出ONNX模型二推理及检测结果可视化1代码2效果图
- github中多个平台共存
jackyrong
github
在个人电脑上,如何分别链接比如oschina,github等库呢,一般教程之列的,默认
ssh链接一个托管的而已,下面讲解如何放两个文件
1) 设置用户名和邮件地址
$ git config --global user.name "xx"
$ git config --global user.email "
[email protected]"
- ip地址与整数的相互转换(javascript)
alxw4616
JavaScript
//IP转成整型
function ip2int(ip){
var num = 0;
ip = ip.split(".");
num = Number(ip[0]) * 256 * 256 * 256 + Number(ip[1]) * 256 * 256 + Number(ip[2]) * 256 + Number(ip[3]);
n
- 读书笔记-jquey+数据库+css
chengxuyuancsdn
htmljqueryoracle
1、grouping ,group by rollup, GROUP BY GROUPING SETS区别
2、$("#totalTable tbody>tr td:nth-child(" + i + ")").css({"width":tdWidth, "margin":"0px", &q
- javaSE javaEE javaME == API下载
Array_06
java
oracle下载各种API文档:
http://www.oracle.com/technetwork/java/embedded/javame/embed-me/documentation/javame-embedded-apis-2181154.html
JavaSE文档:
http://docs.oracle.com/javase/8/docs/api/
JavaEE文档:
ht
- shiro入门学习
cugfy
javaWeb框架
声明本文只适合初学者,本人也是刚接触而已,经过一段时间的研究小有收获,特来分享下希望和大家互相交流学习。
首先配置我们的web.xml代码如下,固定格式,记死就成
<filter>
<filter-name>shiroFilter</filter-name>
&nbs
- Array添加删除方法
357029540
js
刚才做项目前台删除数组的固定下标值时,删除得不是很完整,所以在网上查了下,发现一个不错的方法,也提供给需要的同学。
//给数组添加删除
Array.prototype.del = function(n){
- navigation bar 更改颜色
张亚雄
IO
今天郁闷了一下午,就因为objective-c默认语言是英文,我写的中文全是一些乱七八糟的样子,到不是乱码,但是,前两个自字是粗体,后两个字正常体,这可郁闷死我了,问了问大牛,人家告诉我说更改一下字体就好啦,比如改成黑体,哇塞,茅塞顿开。
翻书看,发现,书上有介绍怎么更改表格中文字字体的,代码如下
 
- unicode转换成中文
adminjun
unicode编码转换
在Java程序中总会出现\u6b22\u8fce\u63d0\u4ea4\u5fae\u535a\u641c\u7d22\u4f7f\u7528\u53cd\u9988\uff0c\u8bf7\u76f4\u63a5这个的字符,这是unicode编码,使用时有时候不会自动转换成中文就需要自己转换了使用下面的方法转换一下即可。
/**
* unicode 转换成 中文
- 一站式 Java Web 框架 firefly
aijuans
Java Web
Firefly是一个高性能一站式Web框架。 涵盖了web开发的主要技术栈。 包含Template engine、IOC、MVC framework、HTTP Server、Common tools、Log、Json parser等模块。
firefly-2.0_07修复了模版压缩对javascript单行注释的影响,并新增了自定义错误页面功能。
更新日志:
增加自定义系统错误页面功能
- 设计模式——单例模式
ayaoxinchao
设计模式
定义
Java中单例模式定义:“一个类有且仅有一个实例,并且自行实例化向整个系统提供。”
分析
从定义中可以看出单例的要点有三个:一是某个类只能有一个实例;二是必须自行创建这个实例;三是必须自行向系统提供这个实例。
&nb
- Javascript 多浏览器兼容性问题及解决方案
BigBird2012
JavaScript
不论是网站应用还是学习js,大家很注重ie与firefox等浏览器的兼容性问题,毕竟这两中浏览器是占了绝大多数。
一、document.formName.item(”itemName”) 问题
问题说明:IE下,可以使用 document.formName.item(”itemName”) 或 document.formName.elements ["elementName&quo
- JUnit-4.11使用报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing错误
bijian1013
junit4.11单元测试
下载了最新的JUnit版本,是4.11,结果尝试使用发现总是报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing这样的错误,上网查了一下,一般的解决方案是,换一个低一点的版本就好了。还有人说,是缺少hamcrest的包。去官网看了一下,如下发现:
- [Zookeeper学习笔记之二]Zookeeper部署脚本
bit1129
zookeeper
Zookeeper伪分布式安装脚本(此脚本在一台机器上创建Zookeeper三个进程,即创建具有三个节点的Zookeeper集群。这个脚本和zookeeper的tar包放在同一个目录下,脚本中指定的名字是zookeeper的3.4.6版本,需要根据实际情况修改):
#!/bin/bash
#!!!Change the name!!!
#The zookeepe
- 【Spark八十】Spark RDD API二
bit1129
spark
coGroup
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
object CoGroupTest_05 {
def main(args: Array[String]) {
v
- Linux中编译apache服务器modules文件夹缺少模块(.so)的问题
ronin47
modules
在modules目录中只有httpd.exp,那些so文件呢?
我尝试在fedora core 3中安装apache 2. 当我解压了apache 2.0.54后使用configure工具并且加入了 --enable-so 或者 --enable-modules=so (两个我都试过了)
去make并且make install了。我希望在/apache2/modules/目录里有各种模块,
- Java基础-克隆
BrokenDreams
java基础
Java中怎么拷贝一个对象呢?可以通过调用这个对象类型的构造器构造一个新对象,然后将要拷贝对象的属性设置到新对象里面。Java中也有另一种不通过构造器来拷贝对象的方式,这种方式称为
克隆。
Java提供了java.lang.
- 读《研磨设计模式》-代码笔记-适配器模式-Adapter
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 适配器模式解决的主要问题是,现有的方法接口与客户要求的方法接口不一致
* 可以这样想,我们要写这样一个类(Adapter):
* 1.这个类要符合客户的要求 ---> 那显然要
- HDR图像PS教程集锦&心得
cherishLC
PS
HDR是指高动态范围的图像,主要原理为提高图像的局部对比度。
软件有photomatix和nik hdr efex。
一、教程
叶明在知乎上的回答:
http://www.zhihu.com/question/27418267/answer/37317792
大意是修完后直方图最好是等值直方图,方法是HDR软件调一遍,再结合不透明度和蒙版细调。
二、心得
1、去除阴影部分的
- maven-3.3.3 mvn archetype 列表
crabdave
ArcheType
maven-3.3.3 mvn archetype 列表
可以参考最新的:http://repo1.maven.org/maven2/archetype-catalog.xml
[INFO] Scanning for projects...
[INFO]
- linux shell 中文件编码查看及转换方法
daizj
shell中文乱码vim文件编码
一、查看文件编码。
在打开文件的时候输入:set fileencoding
即可显示文件编码格式。
二、文件编码转换
1、在Vim中直接进行转换文件编码,比如将一个文件转换成utf-8格式
&
- MySQL--binlog日志恢复数据
dcj3sjt126com
binlog
恢复数据的重要命令如下 mysql> flush logs; 默认的日志是mysql-bin.000001,现在刷新了重新开启一个就多了一个mysql-bin.000002
- 数据库中数据表数据迁移方法
dcj3sjt126com
sql
刚开始想想好像挺麻烦的,后来找到一种方法了,就SQL中的 INSERT 语句,不过内容是现从另外的表中查出来的,其实就是 MySQL中INSERT INTO SELECT的使用
下面看看如何使用
语法:MySQL中INSERT INTO SELECT的使用
1. 语法介绍
有三张表a、b、c,现在需要从表b
- Java反转字符串
dyy_gusi
java反转字符串
前几天看见一篇文章,说使用Java能用几种方式反转一个字符串。首先要明白什么叫反转字符串,就是将一个字符串到过来啦,比如"倒过来念的是小狗"反转过来就是”狗小是的念来过倒“。接下来就把自己能想到的所有方式记录下来了。
1、第一个念头就是直接使用String类的反转方法,对不起,这样是不行的,因为Stri
- UI设计中我们为什么需要设计动效
gcq511120594
UIlinux
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用
- JBOSS服务部署端口冲突问题
HogwartsRow
java应用服务器jbossserverEJB3
服务端口冲突问题的解决方法,一般修改如下三个文件中的部分端口就可以了。
1、jboss5/server/default/conf/bindingservice.beans/META-INF/bindings-jboss-beans.xml
2、./server/default/deploy/jbossweb.sar/server.xml
3、.
- 第三章 Redis/SSDB+Twemproxy安装与使用
jinnianshilongnian
ssdbreidstwemproxy
目前对于互联网公司不使用Redis的很少,Redis不仅仅可以作为key-value缓存,而且提供了丰富的数据结果如set、list、map等,可以实现很多复杂的功能;但是Redis本身主要用作内存缓存,不适合做持久化存储,因此目前有如SSDB、ARDB等,还有如京东的JIMDB,它们都支持Redis协议,可以支持Redis客户端直接访问;而这些持久化存储大多数使用了如LevelDB、RocksD
- ZooKeeper原理及使用
liyonghui160com
ZooKeeper是Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby。今天这篇文章分为三个部分来介绍ZooKeeper,第一部分介绍ZooKeeper的基本原理,第二部分介绍ZooKeeper
- 程序员解决问题的60个策略
pda158
框架工作单元测试
根本的指导方针
1. 首先写代码的时候最好不要有缺陷。最好的修复方法就是让 bug 胎死腹中。
良好的单元测试
强制数据库约束
使用输入验证框架
避免未实现的“else”条件
在应用到主程序之前知道如何在孤立的情况下使用
日志
2. print 语句。往往额外输出个一两行将有助于隔离问题。
3. 切换至详细的日志记录。详细的日
- Create the Google Play Account
sillycat
Google
Create the Google Play Account
Having a Google account, pay 25$, then you get your google developer account.
References:
http://developer.android.com/distribute/googleplay/start.html
https://p
- JSP三大指令
vikingwei
jsp
JSP三大指令
一个jsp页面中,可以有0~N个指令的定义!
1. page --> 最复杂:<%@page language="java" info="xxx"...%>
* pageEncoding和contentType:
> pageEncoding:它