5. nn.Module

1. torch.nn

nn.Parameter:张量子类,表示可学习参数,如weight,bias
nn.Module:所有网络层基类,管理网络属性
nn.functional:函数具体实现,如卷积,池化,激活函数等
nn.init:参数初始化方法

1.1 nn.Module

·parameters:存储管理nn.Parameter类(包括权值、偏置等)
·modules:存储管理nn.Module类(管理各种子模块,卷积层、池化层)
·buffers:存储管理缓冲属性,如BN层中的running_mean
·***_hooks:存储管理钩子函数(有五个)

self._parameters=OrderedDict()
self._buffers=OrderedDict()
self._backward hooks=OrderedDict()
self._forward hooks=OrderedDict()
self._forward_pre_hooks=OrderedDict() 
self._state_dict_hooks =OrderedDict()
self._load_state_dict_pre_hooks=OrderedDict()
self._modules=OrderedDict()

每个module都有8个字典管理它的属性

2. 模型创建步骤

  1. 模型创建
  2. 权值初始化

2.1 模型创建

  1. 构建子模块 —> init()
  2. 拼接子模块 —>forward()

构建子模块代码示例:

import torch.nn as nn
import torch.nn.functional as F

class LeNet(nn.Module):
    def __init__(self, num_classes):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, num_classes)

拼接子模块代码示例(前向传播):

    def forward(self, x):
        out = F.relu(self.conv1(x))
        out = F.max_pool2d(out, 2)
        out = F.relu(self.conv2(out))
        out = F.max_pool2d(out, 2)
        out = out.view(out.size(0), -1)
        out = F.relu(self.fcl(out))
        out = F.relu(self.fc2(out))
        out = self.fc3(out)
        return out

注意:
要继承父类的初始化
super(LeNet, self).init()

①模型容器

nn.Sequetial:按顺序包装多个网络层
nn.ModuleList:像python的list一样包装多个网络层
nn.ModuleDict:像python的dict一样包装多个网络层

nn.Sequetial
import torch.nn as nn
class LeNet(nn.Module):
    def __init__(self, num_classes):
        super(LeNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 6, 5),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(6, 16, 5),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),)

        self.classifier = nn.Sequential(
            nn.Linear(16*5*5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, num_classes),)

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size()[0], -1)
        x = self.classifier(x)
        return x

nn.ModuleList

append():在ModuleList后面添加网络层
extend():拼接两个ModuleList
insert():插入网络层

class net(nn.Module):
    def __init__(self,num_classes):
        super(net,self).__init__()
        self.linears = nn.ModuleList([nn.Linear(10,10) for i in range(20)])
    def forward(self,x):
        for i,linears in enumerate(self.linears):
            x = linears(x)
            return x

a = torch.zeros((10,10))
net = net(1)
b = net(a)
print(b.shape)
nn.ModuleDict
import torch.nn as nn
import torch
class net(nn.Module):
    def __init__(self,num_classes):
        super(net,self).__init__()
        self.choices = nn.ModuleDict({
            'conv':nn.Conv2d(10,10,3),
            'pool':nn.MaxPool2d(3)
        })
        self.activitions = nn.ModuleDict({
            'relu':nn.ReLU(),
            'prelu':nn.PReLU()
        })
    def forward(self,x):
        x = self.choices['conv'](x)
        x = self.activitions['relu'](x)
        return x


a = torch.zeros((4,10,32,32))
net = net(1)
b = net(a)
print(b.shape)

②网络层

卷积层

卷积

nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, 
			padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros' )

·in_channels:输入通道数
·out_channels:输出通道数,等价于卷积核个数
·kernel_size:卷积核尺寸
·stride:步长
·padding:填充个数
·dilation:空洞卷积大小
·groups:分组卷积设置
·bias:偏置
转置卷积

nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1,padding=0, 
		output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros' )
池化层
最大池化
nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

·kernel_size:池化核尺寸
·stride:步长
·padding:填充个数
·dilation:池化核间隔大小
·ceil_mode:尺寸向上取整
·return_indices:记录池化像素索引

平均值池化
nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None )

count_include_pad:填充值用于计算
divisor_override:除法因子

最大值池化上采样
nn.MaxUnpool2d(kernel_size, stride=None, padding=0)
import torch.nn as nn
import torch
class net(nn.Module):
    def __init__(self,num_classes):
        super(net,self).__init__()
        self.choices = nn.ModuleDict({
            'conv':nn.Conv2d(10,10,3),
            'pool':nn.MaxPool2d((2,2),stride=(2,2),return_indices=True),
            'unpool':nn.MaxUnpool2d((2,2),stride=(2,2))
        })
        self.activitions = nn.ModuleDict({
            'relu':nn.ReLU(),
            'prelu':nn.PReLU()
        })
    def forward(self,x):
        x,indices = self.choices['pool'](x)
        x = self.choices['unpool'](x,indices)
        x = self.activitions['relu'](x)
        return x
线性层
nn.Linear(in_features, out_features, bias=True)
激活函数层

nn.Sigmoid() / nn.tanh() / nn.ReLU()

2.2 权值初始化

正确的初始化权值可以加快模型的收敛,而不恰当的权值初始化会导致梯度消失或梯度爆炸。

每一层的梯度依赖于上一层的输出值,
H2=H1*W2
对W2求导:△W2 = …*H1
如果H1很小,就会梯度消失;如果H1很大就会梯度爆炸

在pytorch中,有自己默认初始化参数方式,所以在你定义好网络结构以后,不进行参数初始化也是可以的。

你可能感兴趣的:(pytorch)