- matlab时域离散信号与系统,时域离散信号和系统的频域分析
远方有城
matlab时域离散信号与系统
信号与系统的分析方法有两种:时域分析方法和频域分析方法。在连续时间信号与系统中,信号一般用连续变量时间t的函数表示,系统用微分方程描述,其频域分析方法是拉普拉斯变换和傅立叶变换。在时域离散信号与系统中,信号用序列表示,其自变量仅取整数,非整数时无定义,系统则用差分方程描述,频域分析方法是Z变换和序列傅立叶变换法。Z变换在离散时间系统中的作用就如同拉普拉斯变换在连续时间系统中的作用一样,它把描述离散
- python 实现euler modified变形欧拉法算法
luthane
python算法开发语言
eulermodified变形欧拉法算法介绍EulerModified(改进)变形欧拉法算法,也被称为欧拉修改法或修正欧拉法(EulerModifiedMethod),是一种用于数值求解微分方程的改进方法。这种方法在传统欧拉法的基础上进行了优化,以减少误差。基本原理欧拉法是一种通过逐步逼近来计算函数值的方法,但在某些情况下,传统的欧拉法可能会引入较大的误差。改进的欧拉法通过使用平均斜率来减小误差。
- 二维非稳态导热微分方程_二维非稳态传热的温度场数值模拟
weixin_39759060
二维非稳态导热微分方程
背景:这是本学期凝固实验课的实验之一。这节课有两个数值模拟实验,第一个是二维常物性的,只有一种介质。而第二个实验是模拟凝固过程,稍微复杂一些。这篇文章是针对第一个实验写的,实验书上是按照显示差分进行的,这里改为隐式差分以便于计算。由于本人不是学CS的,因此代码的质量可能不是很高。简要说明:二维非稳态传热、常物性、第一类边界条件、无内热源、网格的划分计算原理概述直角坐标系内二维导热过程温度场控制微分
- 控制系统与MATLAB的菜鸟教程(二)…
originalsinQ
matlab控制系统设计
为打字方便,以下把MATLAB简称“小麦”周六到鸟!!我爱周六!!泡上一杯茶,继续写这个东东……按上次说的,这篇来个一锅端,内容设涉及到数值计算,操作矩阵,符号运算,求解微分方程,基本的编程语句等。所有例子的运行结果我就不给出答案了,可以自己运行一下,一些代码我在输入的时候难免马虎,望包涵,一些可以自行修改,一些可以提出来,我会尽快修正。一些需要特别注意的问题我用粉红色的四号字标出,大家务必要记住
- 非理工科院校怎么打好数学建模比赛 | 南川笔记
南川笔记
Proposition1非理工科院校最好不要打数学建模比赛。虽说“一次建模,终身受益”,但毕竟数学建模既要数学理论的支撑(不仅仅是大学里的微积分、线性代数和概率论与统计,更多的是基于微积分的常偏微分方程、基于线性代数的运筹学和基于概率论与统计的统计分析内容),还要编程的支撑(不是常规的C语言或者Java程序,也不是这几年很火的Python编程,而是基于数值运算的Matlab和基于统计的R),这在一
- Python求解二阶微分方程的解析解
weixin_30777913
python算法前端
代码:fromsympyimportsymbols,Function,dsolve#定义自变量和因变量x=symbols('x')y=Function('y')(x)#定义微分方程eq=y.diff(x,2)+4*y.diff(x)+3*y-xy=Function('y')#使用dsolve求解微分方程solution=dsolve(eq,y(x))print(solution)结果:Eq(y(x
- Python求解微分方程
@星辰大海@
python开发语言
一、引言微分方程表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。微分方程种类很多,具体分类可参考以下博主的文章:https://blog.csdn.net/air_729/article/details/139411996微分方程的解又分成通解和特解,在工程中大多数微分方程是很难得到通解的,因此出现了数值分析或者计算方法这门学科,通过一次次迭代得到方程的某一个或某几个特解,本文
- 2024国赛数学建模保姆级选题建议,思路教程
灿灿数模分号
数学建模
2024年高教社杯全国大学生数学建模竞赛题目分析,思路模型代码论文持续更新,更新见文末名片A题:“板凳龙”闹元宵难度:中等偏上适合专业:工程力学、机械工程、物理、计算机科学、数学等专业的学生适合解答这一题。特别是有扎实几何建模、力学和动态模拟基础的学生。主要算法和模型:1.几何建模:需要建立空间几何模型,可以用螺旋线方程、空间曲线运动方程来描述舞龙队的位置和速度。2.动力学模拟:可以使用微分方程或
- python数值积分_Python求解数值积分
weixin_39892311
python数值积分
本小节求解下述定积分:$$int_{0.7}^4(cos(2πx)e^{-x}+1.2)mathrm{d}x$$版权声明本文可以在互联网上自由转载,但必须:注明出处(作者:海洋饼干叔叔)并包含指向本页面的链接。本文不可以以纸质出版为目的进行改编、摘抄。数值积分-integrateintegrate模块提供了好几种数值积分的方法,包括常微分方程组(ODE)的数值积分。相关函数列表如下:函数名作用函数
- 2022国赛数学建模A题B题C题资料思路汇总(含有代码可运行)_2022高教社杯数学建模a题代码
2401_84619342
2024年程序员学习python
占个位置吧,开始在本帖实时更新赛题思路代码,先更新下初步的想法和资料持续为更新参考思路,可以自行获取。赛题思路会持续进行思路模型分析,下自行获取。A题初步思路想法:A题跟前几年的国赛题高温防护服有点类似,考察能量转换的一个问题,需要求出具体的解,该题目难度略大,结果较精确,小白选择的时候慎重考虑!根据A题给出的问题,需要用到优化模型进行求解,后期需要数学模型能力比较强的选手,要通过构建偏微分方程,
- 备战2024数学建模国赛(模型二十五):微分方程 优秀案例(一)基于非稳态导热的高温作业专用服装设计
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模人工智能备战2024数学建模国赛深度学习数学建模国赛2024
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 偏微分 python_基于Python求解偏微分方程的有限差分法.doc
weixin_39612220
偏微分python
基于Python求解偏微分方程的有限差分法.doc基于Python求解偏微分方程的有限差分法(西安石油大学电子工程学院光电油气测井与检测教育部重点实验室,陕西西安710065)摘要:偏微分方程的求解是很多科学技术问题的关键难点。随着计算机性能的不断提高,数值解法能够解复杂的偏微分方程并将计算结果图形化。相对于昂贵的科学计算软件,Python是一种免费的面向对象、动态的程序设计语言。有限差分法以其概
- 【自动驾驶】控制算法(四)坐标变换与横向误差微分方程
清流君
运动控制自动驾驶人工智能控制算法笔记
写在前面:欢迎光临清流君的博客小天地,这里是我分享技术与心得的温馨角落。个人主页:清流君_CSDN博客,期待与您一同探索移动机器人领域的无限可能。本文系清流君原创之作,荣幸在CSDN首发若您觉得内容有价值,还请评论告知一声,以便更多人受益。转载请注明出处,尊重原创,从我做起。点赞、评论、收藏,三连走一波,让我们一起养成好习惯在这里,您将收获的不只是技术干货,还有思维的火花!系列专栏:【运动控制】系
- 【学习笔记】灰色预测 GM(1,1) 模型 —— Matlab
望月12138
学习笔记matlab
文章目录前言一、灰色预测模型灰色预测适用情况GM(1,1)模型二、示例指数规律检验(原始数据级比检验)级比检验的定义GM(1,1)模型的级比检验模型求解求解微分方程模型评价(检验模型对原始数据的拟合程度)残差检验级比偏差检验三、代码实现----Matlab级比检验代码模型求解代码调用模型求解代码进行预测前言通过模型算法,熟练对Matlab的应用。学习视频链接:https://www.bilibil
- SciPy:基于 NumPy 的算法库和数学工具包,用于数学、科学和工程领域。
Jr_l
#数据科学scipynumpy算法
引言SciPy是一个基于NumPy的开放源码算法库和数学工具包,广泛应用于数学、科学、工程等领域。SciPy扩展了NumPy的功能,提供了更高级的数学算法和函数,使得科学计算更加便捷和高效。SciPy的目标是为用户提供一个全面的科学计算环境,其中涵盖了常见的线性代数、优化、积分、插值、傅里叶变换、信号处理、统计、图像处理、以及ODE(常微分方程)求解等功能。作为NumPy的自然延伸,SciPy主要
- 微分方程求解器电路Simulink仿真
uestc_Venn
matlab嵌入式硬件硬件架构
假设RC振荡电路中的电容电压v_C状态方程如下:给定初始条件v_C(0)=1V,则该方程的数值关系可用如下所示的方块图表示:该方块图可在Simulink内使用元件搭建求解电路,如下图所示:将模型集成为子系统后,输入阶跃信号,通过示波器读出状态电压:稳态则为最终解:
- Python在高等数学和线性代数中的应用
学习不止,掉发不停
数学建模python
Python数学实验与建模学习目录1.SymPy工具库1.1符号运算基础1.2用SymPy做符号函数画图2.高等数学的符号解2.1极限2.2导数2.3级数求和2.4泰勒展开2.5不定积分和定积分2.6代数方程2.7微分方程3.高等数学问题的数值解3.1一重积分3.1.1梯形计算3.1.2辛普森计算3.2多重积分3.3非线性方程数值解3.3.1二分法求根3.3.2牛顿迭代法求根3.3.3scipy工
- 机器学习第二十八周周报 PINNs2
沽漓酒江
机器学习人工智能
文章目录week28PINNs2摘要Abstract一、Lipschitz条件二、文献阅读1.题目数据驱动的偏微分方程2.连续时间模型3.离散时间模型4.结论三、CLSTM1.任务要求2.实验结果3.实验代码3.1模型构建3.2训练过程代码小结参考文献week28PINNs2摘要本文主要讨论PINN。本文简要介绍了Lipschitz条件。其次本文展示了题为Physics-informedneura
- 普及精英思维任重道远
鹭江渔夫
普及就要考虑成本。国家出钱,不可能给你安排马术、击剑、高尔夫、射击。这是一。说到拉丁文,都有拉丁文,但是难度悬殊。就好像都有数学,四则运算是数学,二阶偏微分方程也是数学,这是二。看看中国每年为欧美提供多少高才生,就知道中国的义务教育水平如何。人口基数是一方面,人口基数要和教育质量共同发生作用。这是三。高等教育水平与国家科技水平有关,后发国家的学生去发达国家学习,是正常现象。后发国家在义务教育阶段为
- matlab S函数
追逐太阳的月亮
matlab
S函数中mdlDerivative(t,x,u)参数含义mdlDerivative()中的sys相当于是函数之间用x传递等于output函数x;output()中的sys相当于是输出y;mdlDerivative()的作用是将微分方程自动求积分得到结果函数;S函数的用法先是初始化;再是mdlDerivative()中对控制系统方程需要积分的方程进行计算;得到的中间变量转到output()函数中,在
- 2018-10-12
快乐的大脚aaa
第八章离散时间系统的变换域分析变换域分析原因:将求解问题简单对于连续时间系统,通过L.T.,可以将原来求解微分方程问题转化为求解代数方程问题对于离散时间系统,通过Z.T.,可以将原来求解差分方程问题转化为求解代数方程问题。离散时间序列的频域分析方法离散时间系统和离散时间序列也可以通过正交分解方法,在频域进行分析。--离散时间序列傅里叶变换DTFT,Z变换的一个特例傅里叶变换的离散形式--离散傅里叶
- [数学建模] 计算差分方程的收敛点
YuanDaima2048
算法学习matlab数学建模算法学习笔记
[数学建模]计算差分方程的收敛点差分方程:差分方程描述的是在离散时间下系统状态之间的关系。与微分方程不同,差分方程处理的是在不同时间点上系统状态的变化。通常用来模拟动态系统,如在离散时间点上更新状态并预测未来状态。收敛点:在数学或计算中,收敛点指的是序列、函数或方程不断接近某个特定值或集合的点。当序列或函数的值趋于某个值或集合时,我们称该值或集合为收敛点。在计算中,收敛点表示在进行迭代或计算的过程
- 基于python和matlab的复杂函数拟合的方法、工具以及学习资料
suoge223
复杂函数拟合pythonmatlab开发语言
复杂函数拟合是指对具有复杂形式的函数进行拟合,例如积分函数、微分方程、偏微分函数、隐函数、方程组的拟合,通常涉及到非线性、多变量、高维度、高阶、多参数等情况。在实际应用中,复杂函数拟合常常需要结合不同的拟合方法和工具来实现。下面我们将列举常见的复杂函数拟合种类、对应的拟合方法、实现工具以及示例代码。1.非线性函数拟合非线性函数拟合是对具有非线性关系的函数进行拟合,通常需要使用迭代优化算法来寻找最优
- 常/偏微分方程的类型及数值求解方法和求解工具
suoge223
numpypythonmatlab算法
本文主要列举常/偏微分方程的类型及相应数值求解方法和求解工具,并在文末推荐了网络上的一些求解常/偏微分方程课程,希望能帮助到大家!偏微分方程(PartialDifferentialEquations,PDEs)是包含未知函数及其偏导数的方程,通常用于描述多个自变量之间的关系,并广泛应用于自然科学和工程领域。根据方程的性质和系数的不同,PDEs可以分为多种类型,每种类型都有其特点和相应的求解方法。以
- Python环境下基于辛几何模态分解的信号分解方法
哥廷根数学学派
信号处理python开发语言算法人工智能
基于辛几何的分析方法是一种保护相空间几何结构的新型分析方法,主要用于求解动力学和控制系统中矩阵或Hamilton矩阵的特征值问题,用来解决在动力学和控制系统理论的2n×2n矩阵或哈密顿矩阵的特征值问题,已应用到结构损伤信号、奇异微分方程等系统中。辛几何谱分析SGSA是基于辛几何的一种分析方法,在非线性信号的降噪分析中具有独特优势。辛几何模态分解SGMD是在辛几何分析的基础上一种新的信号分解方法,其
- ODE45——求解状态变量(微分方程组)
Y. F. Zhang
控制系统仿真与CAD
ode45函数ode45实际上是数值分析中数值求解微分方程组的一种方法,4阶五级Runge-Kutta算法。调用方法[t,x]=ode45(Fun,tspan,x0,options,pars)[t,x]=ode45(Fun,tspan,x_0,options,pars)[t,x]=ode45(Fun,tspan,x0,options,pars)其实这种方程的每一个状态变量都是t的函数,我们可以从现
- 第1章 数字基础
猫三他爹
引在本章中,我们将尝试讨论整个文本中使用的所有数值技术。我们将首先讨论向量和矩阵,并说明在应用卡尔曼滤波方程时我们需要知道的各种操作。接下来,我们将展示如何使用两种不同的数值积分技术来求解线性和非线性微分方程。当我们必须将表示现实世界的微分方程整合在用于评估卡尔曼滤波器性能的模拟中时,数值积分技术是必要的。此外,有时需要数值积分技术来传播来自非线性微分方程的状态。接下来,我们将回顾用于表示随机现象
- 青马在线考试怎么搜题找答案?不妨看看这九个实用工具 #知识分享#微信#笔记
培兔兔
笔记面试职场和发展
在信息爆炸的时代,选择适合自己的学习辅助工具和资料,能够提供更高效、便捷和多样化的学习方式。1.WolframAlphaWolframAlpha堪称“数学解题神器”!可以搜索到大学多个专业的题目以及试卷答案,重点是提供的题目搜索大部分的理科学习资源,包括化学、生物、物理、数学、工程、经济、天文、统计等各个方向。一些常微分方程、泰勒展开等等,搜索的题目全部都有详细的提示,以及中间做题步骤、解决方法,
- 本科生题不会怎么搜答案?分享8个可以搜答案的软件 #职场发展#经验分享#知识分享
春色七分甜33
职场和发展经验分享
今天我就分享几款搜题软件和搜题网站给大家,每一款都能轻松搜索题目,让大家快速找到精准的答案,有需要的小伙伴快点赞收藏起来,防止需要的时候找不到啦。1.WolframAlphaWolframAlpha堪称“数学解题神器”!可以搜索到大学多个专业的题目以及试卷答案,重点是提供的题目搜索大部分的理科学习资源,包括化学、生物、物理、数学、工程、经济、天文、统计等各个方向。一些常微分方程、泰勒展开等等,搜索
- 大学生搜题用这三款神器就够了!!! #经验分享#经验分享#媒体
学习93398
媒体
大学生必备,这条笔记大数据一定定要推给刚上大学的学弟学妹!!1.WolframAlphaWolframAlpha堪称“数学解题神器”!可以搜索到大学多个专业的题目以及试卷答案,重点是提供的题目搜索大部分的理科学习资源,包括化学、生物、物理、数学、工程、经济、天文、统计等各个方向。一些常微分方程、泰勒展开等等,搜索的题目全部都有详细的提示,以及中间做题步骤、解决方法,非常方便大家的复习;2.千鸟搜题
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持