s5pv210 u-boot的那些事儿之---lowleve_init.S的分析

最近一直在学习研究u-boot,这是我对s5pv210的u-boot的一些学习的一些列的文章中的一部分。这是我的注释代码,希望能帮到正在学习的你们。
/*
 * Memory Setup stuff - taken from blob memsetup.S
 *
 * Copyright (C) 1999 2000 2001 Erik Mouw ([email protected]) and
 *                     Jan-Derk Bakker ([email protected])
 *
 * Modified for the Samsung SMDK2410 by
 * (C) Copyright 2002
 * David Mueller, ELSOFT AG, 
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */
/*参考引用
http:@www.cnblogs.com/Efronc/archive/2012/02/29/2373668.html    u-boot_smdkv210 分析三:启动代码lowlevel.s分析 


*/

#include 
#include 

#include 
#include "smart210_val.h"

_TEXT_BASE: @定义一个标签,后面将会用到,用于判断代码是否在外部RAM中运行,以此来判断是否初始化外部RAM
    .word   CONFIG_SYS_TEXT_BASE        @这句话的意思是就是在当前位置放一个word型的值,这个值就是CONFIG_SYS_TEXT_BASE 可以这样理解,_TEXT_BASE是一个地址,这个地址中的内容是CONFIG_SYS_TEXT_BASE
    @配合后面的  ldr r2, _TEXT_BASE      /* r1 <- original base addr in ram */ 就是将以_TEXT_BASE为地址的变量的值即CONFIG_SYS_TEXT_BASE赋给r2

    .globl lowlevel_init    @指示告诉汇编器,lowlevel_init这个符号要被链接器用到,所以要在目标文件的符号表中标记它是一个全局符号
lowlevel_init:
    push    {lr}    @将上一个函数的返回地址压到栈中

    /* check reset status  */
    @读取复位标志,如果是睡眠唤醒,跳过接下来的初始化
    ldr r0, =(ELFIN_CLOCK_POWER_BASE+RST_STAT_OFFSET)@将跳转目的地址Reset Control Register的地址传送给r0 Address = 0xE010_A000 =0xE010_0000+0xA000
    ldr r1, [r0]    @将存储器地址为 R0(内存储的值) 的字数据读入寄存器 R1。
    bic r1, r1, #0xfff6ffff     @将r1与0xfff6ffff的反码按位进行与运算(既和0xfff6ffff进行与非运算),并写入r1;结合上一步,可知,这一步的作用是16和19bit置一,其他位清零
    cmp r1, #0x10000    @判断16bit是不是等于1
    beq wakeup_reset_pre @如果是从睡眠状态唤醒,就跳转到wakeup_reset_pre,既跳过接下来的初始化
    cmp r1, #0x80000    @判断是不是从深度空闲(Deep-IDLE)状态唤醒
    beq wakeup_reset_from_didle @如果是,就跳转到wakeup_reset_from_didle

    /* IO Retention release */
    ldr r0, =(ELFIN_CLOCK_POWER_BASE + OTHERS_OFFSET)   @将跳转目的地址MISC Register的地址传送给r0   Address = 0xE010_E000 =0xE010_0000+0xE000
    ldr r1, [r0]    @将存储器地址为 R0(内存储的值) 的字数据读入寄存器 R1
    ldr r2, =IO_RET_REL @将IO_RET_REL( ((1 << 31) | (1 << 29) | (1 << 28)) )存入r2
    orr r1, r1, r2  @将r1r2的值进行或运算,结果存入r1
    str r1, [r0]    @将r1的值写入以r0内的值为地址的内存空间

    /* Disable Watchdog 关闭看门狗*/
    ldr r0, =ELFIN_WATCHDOG_BASE    /* 0xE2700000 */
    mov r1, #0
    str r1, [r0]        @清空以r0内的值为地址的内存空间

    /* SRAM(2MB) init for SMDKC110 */
    /* GPJ1 SROM_ADDR_16to21 */
    /*配置sram引脚,16位数据宽度,22位地址宽度*/
    ldr r0, =ELFIN_GPIO_BASE

    ldr r1, [r0, #GPJ1CON_OFFSET]
    bic r1, r1, #0xFFFFFF   @清除r1内的低24位值
    ldr r2, =0x444444   @引脚设置为addr功能
    orr r1, r1, r2
    str r1, [r0, #GPJ1CON_OFFSET]

    ldr r1, [r0, #GPJ1PUD_OFFSET]
    ldr r2, =0x3ff
    bic r1, r1, r2
    str r1, [r0, #GPJ1PUD_OFFSET]

    /* GPJ4 SROM_ADDR_16to21 */
    ldr r1, [r0, #GPJ4CON_OFFSET]
    bic r1, r1, #(0xf<<16)
    ldr r2, =(0x4<<16)
    orr r1, r1, r2
    str r1, [r0, #GPJ4CON_OFFSET]

    ldr r1, [r0, #GPJ4PUD_OFFSET]
    ldr r2, =(0x3<<8)
    bic r1, r1, r2
    str r1, [r0, #GPJ4PUD_OFFSET]


    /* CS0 - 16bit sram, enable nBE, Byte base address */
    ldr r0, =ELFIN_SROM_BASE    /* 0xE8000000 */
    mov r1, #0x1
    str r1, [r0]

    /* PS_HOLD pin(GPH0_0) set to high */
    /*设置PMIC(Power Management IC)控制引脚,既电源管理ic引脚(基于I2C)*/
    ldr r0, =(ELFIN_CLOCK_POWER_BASE + PS_HOLD_CONTROL_OFFSET)
    ldr r1, [r0]
    orr r1, r1, #0x300
    orr r1, r1, #0x1
    str r1, [r0]

    /* when we already run in ram, we don't need to relocate U-Boot.
     * and actually, memory controller must be configured before U-Boot
     * is running in ram.
     */
     /*下面的代码事实上只是判断pc和_TEXT_BASE(0X23e00000)的最高两位是否相同*/
     /*根据s5pv210的数据手册可知,首先,系统会运行固化在irom的BL0,紧接着会从外部nand
     *或sdcard等设备读取前16K的BL1代码到IRAM中的0xD0020000处。然后从0xD0020010处运行(因为前16byte是校验和的值)
     *BL1的作用是初始化DRAM,拷贝BL2到DRAM中_TEXT_BASE(0X23e00000)处,然后跳到DRAM中运行
     ×因此可以通过最高两位来判断代码是在哪里运行
     ×同时可知,当代码已经就在DRAM中运行时,就必须跳过DRAM的初始化
     */
    ldr r0, =0x00ffffff
    bic r1, pc, r0      /* r0 <- current base addr of code */
    ldr r2, _TEXT_BASE      /* r1 <- original base addr in ram */
    bic r2, r2, r0      /* r0 <- current base addr of code */
    cmp     r1, r2                  /* compare r0, r1                  */
    beq     1f          /* r0 == r1 then skip sdram init   */

    /* init system clock */
    bl system_clock_init

    /* Memory initialize */
    bl mem_ctrl_asm_init

1:
    /* for UART */
    bl uart_asm_init    @调用Uart初始化

    bl tzpc_init        

#if defined(CONFIG_ONENAND)
    bl onenandcon_init
#endif

#if defined(CONFIG_NAND)
    /* simple init for NAND */
    bl nand_asm_init    @nand初始化
#endif

    /* check reset status  */

    ldr r0, =(ELFIN_CLOCK_POWER_BASE+RST_STAT_OFFSET)
    ldr r1, [r0]
    bic r1, r1, #0xfffeffff
    cmp r1, #0x10000
    beq wakeup_reset_pre

    /* ABB disable */
    ldr r0, =0xE010C300
    orr r1, r1, #(0x1<<23)
    str r1, [r0]

    /* Print 'K' */
    ldr r0, =ELFIN_UART_CONSOLE_BASE
    ldr r1, =0x4b4b4b4b
    str r1, [r0, #UTXH_OFFSET]

    pop {pc}    @返回到start.s

wakeup_reset_from_didle:    @从深度睡眠中唤醒
    /* Wait when APLL is locked */
    ldr r0, =ELFIN_CLOCK_POWER_BASE
lockloop:
    ldr r1, [r0, #APLL_CON0_OFFSET]
    and r1, r1, #(1<<29)
    cmp r1, #(1<<29)
    bne     lockloop
    beq exit_wakeup

wakeup_reset_pre:   
    mrc p15, 0, r1, c1, c0, 1   @Read CP15 Auxiliary control register
    and r1, r1, #0x80000000 @Check L2RD is disable or not
    cmp r1, #0x80000000
    bne wakeup_reset        @if L2RD is not disable jump to wakeup_reset

    bl  disable_l2cache
    bl  v7_flush_dcache_all
    bl  enable_l2cache

wakeup_reset:
    /* init system clock */
    bl system_clock_init
    bl mem_ctrl_asm_init
    bl tzpc_init
#if defined(CONFIG_ONENAND)
    bl onenandcon_init
#endif
#if defined(CONFIG_NAND)
    bl nand_asm_init
#endif

exit_wakeup:
    /*Load return address and jump to kernel*/
    ldr r0, =(INF_REG_BASE+INF_REG0_OFFSET)
    ldr r1, [r0]    /* r1 = physical address of s5pc110_cpu_resume function*/

    mov pc, r1      /*Jump to kernel */
    nop
    nop

/*
 * system_clock_init: Initialize core clock and bus clock.
 * void system_clock_init(void)
 */
system_clock_init:

    ldr r0, =ELFIN_CLOCK_POWER_BASE @0xe0100000 将时钟的基地址装载如r0

    /* Set Mux to FIN */
    ldr r1, =0x0    @将0x00000000装入r1
    str r1, [r0, #CLK_SRC0_OFFSET]  @将r1内的值装入地址为(r0内的值+CLK_SRC0_OFFSET = 0xe0100200)的内存(即Clock Source Control Registers)
    /*上面一段的作用是将Clock Source Control Registers值清空
    *具体的作用是将VPLL_SEL、EPLL_SEL、MPLL_SEL和APLL_SEL的时钟源设置为FINVPLL,将MUX_MSYS_SEL、MUX_DSYS_SEL和MUX_PSYS_SEL时钟源设置为SCLKMPLL
    *将ONENAND_SEL时钟源设置为HCLK_PSYS
    *为什么这样设置,因为未设置 PLL 和各种分频系数之前,我们不能使用 PLL,为了保险起见,暂时直接使用频率较低
    *的外接的 24MHz 晶振,待设置好 PLL 和分频系数后再重新设置各种时钟开关
    */

    ldr r1, =APLL_LOCKTIME_VAL  @将APLL_LOCKTIME_VAL(0x2cf)装入r1
    str r1, [r0, #APLL_LOCK_OFFSET] @将r1内的值装入地址为(r0内的值+CLK_SRC0_OFFSET = 0xe0100000)的内存,即设置APLL的锁定周期
    /*
    *下面是原文对这个步骤的解释,本人不才,不能很好的翻译过来,只能照抄誊录,希望高手空闲的时候能帮忙翻译一下
    *A PLL requires locking period when input frequency is changed or frequency division (multiplication) values are
    *changed.PLL_LOCK register specifies this locking period, which is based on PLL’s source clock. During this
    *period, output will be low state
    */

    /* Disable PLL */
    ldr r1, =0x0
    str r1, [r0, #APLL_CON0_OFFSET] @将APLL控制寄存器的值清空,这个寄存器的第31位置零关闭APLL 25-16bit配置MDIV的分频 
    /*
    *13-8bit配置PDIV的分频 2-0bit配置SDIV的分频
    */ 
    ldr r1, =0x0
    str r1, [r0, #MPLL_CON_OFFSET]  @配置MPLL

    ldr r1, =0x0
    str r1, [r0, #MPLL_CON_OFFSET]  @?为什么再次配置,查看数据手册没有提到需要配置两次

    ldr     r1, [r0, #CLK_DIV0_OFFSET]  @Clock Divider Control Register(0xe0100300)
    ldr r2, =CLK_DIV0_MASK  @CLK_DIV0_MASK(0x7fffffff)
    bic r1, r1, r2  @首先清零

    ldr r2, =CLK_DIV0_VAL   @CLK_DIV0_VAL
    orr r1, r1, r2
    str r1, [r0, #CLK_DIV0_OFFSET]
    /*
    *CLK_DIV0_VAL = ((0<

    ldr r1, =APLL_VAL
    str r1, [r0, #APLL_CON0_OFFSET]

    ldr r1, =MPLL_VAL
    str r1, [r0, #MPLL_CON_OFFSET]

    ldr r1, =VPLL_VAL
    str r1, [r0, #VPLL_CON_OFFSET]
#if defined(CONFIG_EVT1)
    ldr r1, =AFC_ON
    str r1, [r0, #APLL_CON1_OFFSET]
#endif
    mov r1, #0x10000
1:  subs    r1, r1, #1  @延时 将r1-1的值存入r1
    bne 1b  @如果运算结果不等零(即CPSR寄存器标志位Z不等于一),退回到前面标签“1”处执行  当 CPSR 寄存器中的 Z 
    @条件码置位时(即前面的计算结果为零),则顺序执行(即运行接下来的:ldr   r1, [r0, #CLK_SRC0_OFFSET])
    @当计算结果为零时,Z1
    ldr r1, [r0, #CLK_SRC0_OFFSET]  @Clock Source Control Registers(0xe0100200)
    ldr r2, =0x10001111 @
    orr r1, r1, r2  @ONENAND时钟源为HCLK_DSYS MUX_PSYS_SEL时钟源为SCLKMPLL  MUX_DSYS_SEL时钟源为SCLKMPLL  MUX_MSYS_SEL时钟源为SCLKAPLL
    @VPLL_SEL时钟源为FOUTVPLL   EPLL_SEL时钟源为FOUTEPLL    MPLL_SEL时钟源为FOUTMPLL APLL_SEL时钟源为FOUTAPLL
    str r1, [r0, #CLK_SRC0_OFFSET]  @装载

#if defined(CONFIG_MCP_AC)  @210没有定义,暂时不分析

    /* CLK_SRC6[25:24] -> OneDRAM clock sel = MPLL */
    ldr r1, [r0, #CLK_SRC6_OFFSET]
    bic r1, r1, #(0x3<<24)
    orr r1, r1, #0x01000000
    str r1, [r0, #CLK_SRC6_OFFSET]

    /* CLK_DIV6[31:28] -> 4=1/5, 3=1/4(166MHZ@667MHz), 2=1/3 */
    ldr r1, [r0, #CLK_DIV6_OFFSET]
    bic r1, r1, #(0xF<<28)
    bic r1, r1, #(0x7<<12)  @; ONENAND_RATIO: 0
    orr r1, r1, #0x30000000
    str r1, [r0, #CLK_DIV6_OFFSET]

#elif defined (CONFIG_MCP_H)

    /* CLK_SRC6[25:24] -> OneDRAM clock sel = 00:SCLKA2M, 01:SCLKMPLL */
    ldr r1, [r0, #CLK_SRC6_OFFSET]
    bic r1, r1, #(0x3<<24)
    orr r1, r1, #0x00000000
    str r1, [r0, #CLK_SRC6_OFFSET]

    /* CLK_DIV6[31:28] -> 4=1/5, 3=1/4(166MHZ@667MHz), 2=1/3 */
    ldr r1, [r0, #CLK_DIV6_OFFSET]
    bic r1, r1, #(0xF<<28)
    bic r1, r1, #(0x7<<12)  @; ONENAND_RATIO: 0
    orr r1, r1, #0x00000000
    str r1, [r0, #CLK_DIV6_OFFSET]

#elif defined (CONFIG_MCP_B) || defined (CONFIG_MCP_D)

    /* CLK_SRC6[25:24] -> OneDRAM clock sel = 00:SCLKA2M, 01:SCLKMPLL */
    ldr r1, [r0, #CLK_SRC6_OFFSET]
    bic r1, r1, #(0x3<<24)
    orr r1, r1, #0x01000000
    str r1, [r0, #CLK_SRC6_OFFSET]

    /* CLK_DIV6[31:28] -> 4=1/5, 3=1/4(166MHZ@667MHz), 2=1/3 */
    ldr r1, [r0, #CLK_DIV6_OFFSET]
    bic r1, r1, #(0xF<<28)
    bic r1, r1, #(0x7<<12)  @; ONENAND_RATIO: 0
    orr r1, r1, #0x30000000
    str r1, [r0, #CLK_DIV6_OFFSET]

#elif defined (CONFIG_MCP_SINGLE)   @定义了这个,我们进行分析

    /* CLK_DIV6 */
    ldr r1, [r0, #CLK_DIV6_OFFSET]  @设置分频   Clock Divider Control Register(0xe0100318)
    bic r1, r1, #(0x7<<12)  @; ONENAND_RATIO: 
    @0DIVFLASH clock divider ratio,计算公式:SCLK_ONENAND = MOUTFLASH / (ONENAND_RATIO + 1)
    str r1, [r0, #CLK_DIV6_OFFSET]

#endif

    mov pc, lr  @打完收功!


/*
 * uart_asm_init: Initialize UART in asm mode, 115200bps fixed.
 * void uart_asm_init(void)
 */
uart_asm_init:

    /* set GPIO(GPA) to enable UART 没什么可说的,串口引脚复用设置*/
    @ GPIO setting for UART
    ldr r0, =ELFIN_GPIO_BASE
    ldr r1, =0x22222222
    str     r1, [r0, #GPA0CON_OFFSET]

    ldr     r1, =0x2222
    str     r1, [r0, #GPA1CON_OFFSET]

    @ HP V210 use. SMDK not use.
#if defined(CONFIG_VOGUES)
    ldr    r1, =0x100
    str    r1, [r0, #GPC0CON_OFFSET]

    ldr    r1, =0x4
    str    r1, [r0, #GPC0DAT_OFFSET]
#endif

    ldr r0, =ELFIN_UART_CONSOLE_BASE        @0xE2900000
    mov r1, #0x0
    str r1, [r0, #UFCON_OFFSET] @0xE2900008 UART FIFO Control Register 在这里关闭了FIFO功能
    str r1, [r0, #UMCON_OFFSET] @0xE290000c UART Modem Control Register 在这里关闭了AFL(Auto Flow Control硬件流控制)和中断

    mov r1, #0x3
    str r1, [r0, #ULCON_OFFSET] @0xE2900000 UART Line Control Register  在这里采用8bit 1个停止位 无奇偶校验 

    ldr r1, =0x3c5
    str r1, [r0, #UCON_OFFSET]  @0xE2900000 UART Control Register   

    ldr r1, =UART_UBRDIV_VAL    @波特率设置
    str r1, [r0, #UBRDIV_OFFSET]    @0xE2900028

    ldr r1, =UART_UDIVSLOT_VAL  @较细一些分频,用于补偿
    str r1, [r0, #UDIVSLOT_OFFSET]

    ldr r1, =0x4f4f4f4f
    str r1, [r0, #UTXH_OFFSET]      @'O'    @打印“O”

    mov pc, lr

/*
 * Nand Interface Init for SMDKC110
 */
nand_asm_init:

    /* Setting GPIO for NAND */
    /* This setting is NAND initialze code at booting time in iROM. */
    @设置IO BASE

    ldr r1, [r0, #MP01CON_OFFSET]
    bic r1, r1, #(0xf<<8)
    orr r1, r1, #(0x3<<8)
    str r1, [r0, #MP01CON_OFFSET]

    ldr r1, [r0, #MP01PUD_OFFSET]
    bic r1, r1, #(0x3<<4)
    str r1, [r0, #MP01PUD_OFFSET]

    ldr r1, [r0, #MP03CON_OFFSET]
    bic r1, r1, #0xFFFFFF
    ldr r2, =0x22222222
    orr r1, r1, r2
    str r1, [r0, #MP03CON_OFFSET]

    ldr r1, [r0, #MP03PUD_OFFSET]
    ldr r2, =0x3fff
    bic r1, r1, r2
    str r1, [r0, #MP03PUD_OFFSET]

    ldr r0, =ELFIN_NAND_BASE    @0xB0E00000

    ldr r1, [r0, #NFCONF_OFFSET]    @Nand Flash Configuration Register  0xB0E00000
    ldr r2, =0x1412         @smart210对应的NANDFlash是每页是2K 从nand的数据手册可知,需要4个周期所以bit2设置为1 同样bit2选择page大小为2K
    /*可知nand类型是SLC,bit3设置为0(PS:事实上,原版的不是这样的,选择的是MLC,我这里为了适应我的板子,改为SLC,各位看官可以根据具体
    *情况自我修改)bit[7-4]TWRPH1 设置nand的延时,公式为:Duration = HCLK x ( TWRPH1 + 1 )   这里设置为b0001
    *bit[11-8]TWRPH0 设置nand的延时,公式为:Duration = HCLK x ( TWRPH0 + 1 ) 这里设置为b0100
    *[15:12]  CLE and ALE duration 公式:Duration = HCLK x TACLS 设置为b0001
    */
    bic r1, r1, r2
    ldr r2, =0x1412@原来是0x7772   ldr r2, =NFCONF_VAL  我对应我的板子做了修改    
    orr r1, r1, r2
    str r1, [r0, #NFCONF_OFFSET]

    ldr r1, [r0, #NFCONT_OFFSET]
    ldr r2, =0x707C7
    bic r1, r1, r2
    ldr r2, =NFCONT_VAL @NFCONT_VAL  (0<<18)|(0<<17)|(0<<16)|(0<<10)|(0<<9)|(0<<8)|(0<<7)|(0<<6)|(0x3<<1)|(1<<0)
    orr r1, r1, r2
    str r1, [r0, #NFCONT_OFFSET]

    /*??蔿?誶???蝦????NFCONF_OFFSET]
    orr r1, r1, #0x70
    orr r1, r1, #0x7700
    str     r1, [r0, #NFCONF_OFFSET]

    ldr r1, [r0, #NFCONT_OFFSET]
    orr r1, r1, #0x03
    str     r1, [r0, #NFCONT_OFFSET]
    */

    mov pc, lr

/*
 * Setting TZPC[TrustZone Protection Controller]
 */
tzpc_init:

    ldr r0, =ELFIN_TZPC0_BASE
    mov r1, #0x0
    str r1, [r0]
    mov r1, #0xff
    str r1, [r0, #TZPC_DECPROT0SET_OFFSET]
    str r1, [r0, #TZPC_DECPROT1SET_OFFSET]
    str r1, [r0, #TZPC_DECPROT2SET_OFFSET]

    ldr     r0, =ELFIN_TZPC1_BASE
    str r1, [r0, #TZPC_DECPROT0SET_OFFSET]
    str r1, [r0, #TZPC_DECPROT1SET_OFFSET]
    str r1, [r0, #TZPC_DECPROT2SET_OFFSET]

    ldr r0, =ELFIN_TZPC2_BASE
    str r1, [r0, #TZPC_DECPROT0SET_OFFSET]
    str r1, [r0, #TZPC_DECPROT1SET_OFFSET]
    str r1, [r0, #TZPC_DECPROT2SET_OFFSET]
    str r1, [r0, #TZPC_DECPROT3SET_OFFSET]

    ldr r0, =ELFIN_TZPC3_BASE
    str r1, [r0, #TZPC_DECPROT0SET_OFFSET]
    str r1, [r0, #TZPC_DECPROT1SET_OFFSET]
    str r1, [r0, #TZPC_DECPROT2SET_OFFSET]

    mov pc, lr

/*
 * OneNAND Interface Init
 */
onenandcon_ 癷譶胕觮OneNAND ?肎覲?蝧etting for OneNAND
    ldr r0, =ELFIN_GPIO_BASE    @0xE0200000
    ldr r1, [r0, #MP01CON_OFFSET]
    orr r1, r1, #0x00550000
    str r1, [r0, #MP01CON_OFFSET]

    ldr r1, [r0, #MP03CON_OFFSET]
    orr r1, r1, #0x0550
    orr r1, r1, #0x00550000
    str r1, [r0, #MP03CON_OFFSET]

    ldr r1, =0xFFFF
    str r1, [r0, #MP01DRV_SR_OFFSET]
    str r1, [r0, #MP03DRV_SR_OFFSET]
    str r1, [r0, #MP06DRV_SR_OFFSET]
    str r1, [r0, #MP07DRV_SR_OFFSET]

wait_orwb:
    @; Read ONENAND_IF_STATUS
    ldr r0, =ELFIN_ONENANDCON_BASE  @; 0xB0600000
    ldr r1, [r0, #ONENAND_IF_STATUS_OFFSET]
    bic r1, r1, #0xFFFFFFFE
    cmp r1, #0x0

    @; ORWB != 0x0
    bne wait_orwb

    @; write new configuration to onenand system configuration1 register
    ldr r1, =0xF006         @; Sync.
    ldr r2, =(ELFIN_ONENAND_BASE+0x1E442)   @; 0x1E442(REG_SYS_CONF1)
    strh    r1, [r2]

    @; read one dummy halfword
    ldrh    r1, [r2]
    ldrh    r1, [r2]

    @; write new configuration to ONENAND_IF_CTRL
    ldr r0, =ELFIN_ONENANDCON_BASE  @; 0xB0600000
    @;ldr   r1, =0x2F006            @; ONENAND_IF_CTRL_REG_VAL (GCE off)
    ldr r1, =0x402F006          @; ONENAND_IF_CTRL_REG_VAL (GCE on)
    str r1, [r0, #ONENAND_IF_CTRL_OFFSET]

    mov pc, lr


#ifdef CONFIG_ENABLE_MMU    @uboot没有开启mmu

    #ifdef CONFIG_MCP_SINGLE
/*
 * MMU Table for SMDKC110
 * 0x0000_0000 -- 0xBFFF_FFFF => Not Allowed
 * 0xB000_0000 -- 0xB7FF_FFFF => A:0xB000_0000 -- 0xB7FF_FFFF
 * 0xC000_0000 -- 0xC7FF_FFFF => A:0x3000_0000 -- 0x37FF_FFFF
 * 0xC800_0000 -- 0xDFFF_FFFF => Not Allowed
 * 0xE000_0000 -- 0xFFFF_FFFF => A:0xE000_0000 -- 0XFFFF_FFFF
 */

    /* form a first-level section entry */
.macro FL_SECTION_ENTRY base,ap,d,c,b
    .word (\base << 20) | (\ap << 10) | \
          (\d << 5) | (1<<4) | (\c << 3) | (\b << 2) | (1<<1)
.endm
.section .mmudata, "a"
    .align 14
    @ the following alignment creates the mmu table at address 0x4000.
    .globl mmu_table
mmu_table:
    .set __base,0
    @ Access for iRAM
    .rept 0x100
    FL_SECTION_ENTRY __base,3,0,0,0
    .set __base,__base+1
    .endr

    @ Not Allowed
    .rept 0x200 - 0x100
    .word 0x00000000
    .endr

    .set __base,0x200
    @ should be accessed
    .rept 0x600 - 0x200
    FL_SECTION_ENTRY __base,3,0,1,1
    .set __base,__base+1
    .endr

    .rept 0x800 - 0x600
    .word 0x00000000
    .endr

    .set __base,0x800
    @ should be accessed
    .rept 0xb00 - 0x800
    FL_SECTION_ENTRY __base,3,0,0,0
    .set __base,__base+1
    .endr

/*  .rept 0xc00 - 0xb00
    .word 0x00000000
    .endr */

    .set __base,0xB00
    .rept 0xc00 - 0xb00
    FL_SECTION_ENTRY __base,3,0,0,0
    .set __base,__base+1
    .endr

    .set __base,0x200
    @ 256MB for SDRAM with cacheable
    .rept 0xD00 - 0xC00
    FL_SECTION_ENTRY __base,3,0,1,1
    .set __base,__base+1
    .endr

    @ access is not allowed.
    @.rept 0xD00 - 0xC80
    @.word 0x00000000
    @.endr

    .set __base,0xD00
    @ 1:1 mapping for debugging with non-cacheable
    .rept 0x1000 - 0xD00
    FL_SECTION_ENTRY __base,3,0,0,0
    .set __base,__base+1
    .endr

    #else   @ CONFIG_MCP_AC, CONFIG_MCP_H, CONFIG_MCP_B

/*
 * MMU Table for SMDKC110
 * 0x0000_0000 -- 0xBFFF_FFFF => Not Allowed
 * 0xB000_0000 -- 0xB7FF_FFFF => A:0xB000_0000 -- 0xB7FF_FFFF
 * 0xC000_0000 -- 0xC7FF_FFFF => A:0x3000_0000 -- 0x37FF_FFFF
 * 0xC800_0000 -- 0xDFFF_FFFF => Not Allowed
 * 0xE000_0000 -- 0xFFFF_FFFF => A:0xE000_0000 -- 0XFFFF_FFFF
 */

    /* form a first-level section entry */
.macro FL_SECTION_ENTRY base,ap,d,c,b
    .word (\base << 20) | (\ap << 10) | \
          (\d << 5) | (1<<4) | (\c << 3) | (\b << 2) | (1<<1)
.endm
.section .mmudata, "a"
    .align 14
    @ the following alignment creates the mmu table at address 0x4000.
    .globl mmu_table
mmu_table:
    .set __base,0
    @ Access for iRAM
    .rept 0x100
    FL_SECTION_ENTRY __base,3,0,0,0
    .set __base,__base+1
    .endr

    @ Not Allowed
    .rept 0x300 - 0x100
    .word 0x00000000
    .endr

    .set __base,0x300
    @ should be accessed
    .rept 0x350 - 0x300
    FL_SECTION_ENTRY __base,3,0,1,1
    .set __base,__base+1
    .endr

    @ Not Allowed
    .rept 0x400 - 0x350
    .word 0x00000000
    .endr

    .set __base,0x400
    @ should be accessed
    .rept 0x500 - 0x400
    FL_SECTION_ENTRY __base,3,0,1,1
    .set __base,__base+1
    .endr

    .rept 0x800 - 0x500
    .word 0x00000000
    .endr

    .set __base,0x800
    @ should be accessed
    .rept 0xb00 - 0x800
    FL_SECTION_ENTRY __base,3,0,0,0
    .set __base,__base+1
    .endr

    .set __base,0xB00
    .rept 0xc00 - 0xb00
    FL_SECTION_ENTRY __base,3,0,0,0
    .set __base,__base+1
    .endr

    .set __base,0x300
    @ 80MB for SDRAM with cacheable
    .rept 0xC50 - 0xC00
    FL_SECTION_ENTRY __base,3,0,1,1
    .set __base,__base+1
    .endr

    @ Not Allowed
    .rept 0xD00 - 0xC50
    .word 0x00000000
    .endr

    .set __base,0xD00
    @ 1:1 mapping for debugging with non-cacheable
    .rept 0x1000 - 0xD00
    FL_SECTION_ENTRY __base,3,0,0,0
    .set __base,__base+1
    .endr
    #endif
#endif

如果你觉得写得还行,转载时请保留作者信息。作者:捷宇 邮箱:[email protected]

你可能感兴趣的:(u-boot)