synchronized是Java中的关键字,是一种同步锁。它修饰的对象有以下几种:
修饰一个代码块
一个线程访问一个对象中的synchronized(this)同步代码块时,其他试图访问该对象的线程将被阻塞。我们看下面一个例子:
【Demo1】:synchronized的用法
/**
* 同步线程
*/
class SyncThread implements Runnable {
private static int count;
public SyncThread() {
count = 0;
}
public void run() {
synchronized(this) {
for (int i = 0; i < 5; i++) {
try {
System.out.println(Thread.currentThread().getName() + ":" + (count++));
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
public int getCount() {
return count;
}
}
SyncThread的调用:
SyncThread syncThread = new SyncThread();
Thread thread1 = new Thread(syncThread, "SyncThread1");
Thread thread2 = new Thread(syncThread, "SyncThread2");
thread1.start();
thread2.start();
结果如下:
SyncThread1:0
SyncThread1:1
SyncThread1:2
SyncThread1:3
SyncThread1:4
SyncThread2:5
SyncThread2:6
SyncThread2:7
SyncThread2:8
SyncThread2:9*
当两个并发线程(thread1和thread2)访问同一个对象(syncThread)中的synchronized代码块时,在同一时刻只能有一个线程得到执行,另一个线程受阻塞,必须等待当前线程执行完这个代码块以后才能执行该代码块。Thread1和thread2是互斥的,因为在执行synchronized代码块时会锁定当前的对象,只有执行完该代码块才能释放该对象锁,下一个线程才能执行并锁定该对象。
我们再把SyncThread的调用稍微改一下:
Thread thread1 = new Thread(new SyncThread(), "SyncThread1");
Thread thread2 = new Thread(new SyncThread(), "SyncThread2");
thread1.start();
thread2.start();
结果如下:
SyncThread1:0
SyncThread2:1
SyncThread1:2
SyncThread2:3
SyncThread1:4
SyncThread2:5
SyncThread2:6
SyncThread1:7
SyncThread1:8
SyncThread2:9
不是说一个线程执行synchronized代码块时其它的线程受阻塞吗?为什么上面的例子中thread1和thread2同时在执行。这是因为synchronized只锁定对象,每个对象只有一个锁(lock)与之相关联,而上面的代码等同于下面这段代码:
SyncThread syncThread1 = new SyncThread();
SyncThread syncThread2 = new SyncThread();
Thread thread1 = new Thread(syncThread1, "SyncThread1");
Thread thread2 = new Thread(syncThread2, "SyncThread2");
thread1.start();
thread2.start();
这时创建了两个SyncThread的对象syncThread1和syncThread2,线程thread1执行的是syncThread1对象中的synchronized代码(run),而线程thread2执行的是syncThread2对象中的synchronized代码(run);我们知道synchronized锁定的是对象,这时会有两把锁分别锁定syncThread1对象和syncThread2对象,而这两把锁是互不干扰的,不形成互斥,所以两个线程可以同时执行。
2.当一个线程访问对象的一个synchronized(this)同步代码块时,另一个线程仍然可以访问该对象中的非synchronized(this)同步代码块。
【Demo2】:多个线程访问synchronized和非synchronized代码块
class Counter implements Runnable{
private int count;
public Counter() {
count = 0;
}
public void countAdd() {
synchronized(this) {
for (int i = 0; i < 5; i ++) {
try {
System.out.println(Thread.currentThread().getName() + ":" + (count++));
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
//非synchronized代码块,未对count进行读写操作,所以可以不用synchronized
public void printCount() {
for (int i = 0; i < 5; i ++) {
try {
System.out.println(Thread.currentThread().getName() + " count:" + count);
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public void run() {
String threadName = Thread.currentThread().getName();
if (threadName.equals("A")) {
countAdd();
} else if (threadName.equals("B")) {
printCount();
}
}
}
调用代码:
Counter counter = new Counter();
Thread thread1 = new Thread(counter, "A");
Thread thread2 = new Thread(counter, "B");
thread1.start();
thread2.start();
结果如下:
A:0
B count:1
A:1
B count:2
A:2
B count:3
A:3
B count:4
A:4
B count:5
上面代码中countAdd是一个synchronized的,printCount是非synchronized的。从上面的结果中可以看出一个线程访问一个对象的synchronized代码块时,别的线程可以访问该对象的非synchronized代码块而不受阻塞。
指定要给某个对象加锁
【Demo3】:指定要给某个对象加锁
/**
* 银行账户类
*/
class Account {
String name;
float amount;
public Account(String name, float amount) {
this.name = name;
this.amount = amount;
}
//存钱
public void deposit(float amt) {
amount += amt;
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//取钱
public void withdraw(float amt) {
amount -= amt;
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public float getBalance() {
return amount;
}
}
/**
* 账户操作类
*/
class AccountOperator implements Runnable{
private Account account;
public AccountOperator(Account account) {
this.account = account;
}
public void run() {
synchronized (account) {
account.deposit(500);
account.withdraw(500);
System.out.println(Thread.currentThread().getName() + ":" + account.getBalance());
}
}
}
调用代码:
Account account = new Account("zhang san", 10000.0f);
AccountOperator accountOperator = new AccountOperator(account);
final int THREAD_NUM = 5;
Thread threads[] = new Thread[THREAD_NUM];
for (int i = 0; i < THREAD_NUM; i ++) {
threads[i] = new Thread(accountOperator, "Thread" + i);
threads[i].start();
}
结果如下:
Thread3:10000.0
Thread2:10000.0
Thread1:10000.0
Thread4:10000.0
Thread0:10000.0
在AccountOperator 类中的run方法里,我们用synchronized 给account对象加了锁。这时,当一个线程访问account对象时,其他试图访问account对象的线程将会阻塞,直到该线程访问account对象结束。也就是说谁拿到那个锁谁就可以运行它所控制的那段代码。
当有一个明确的对象作为锁时,就可以用类似下面这样的方式写程序。
public void method3(SomeObject obj)
{
//obj 锁定的对象
synchronized(obj)
{
// todo
}
}
当没有明确的对象作为锁,只是想让一段代码同步时,可以创建一个特殊的对象来充当锁:
class Test implements Runnable
{
private byte[] lock = new byte[0]; // 特殊的instance变量
public void method()
{
synchronized(lock) {
// todo 同步代码块
}
}
public void run() {
}
}
说明:零长度的byte数组对象创建起来将比任何对象都经济――查看编译后的字节码:生成零长度的byte[]对象只需3条操作码,而Object lock = new Object()则需要7行操作码。
修饰一个方法
Synchronized修饰一个方法很简单,就是在方法的前面加synchronized,public synchronized void method(){//todo}; synchronized修饰方法和修饰一个代码块类似,只是作用范围不一样,修饰代码块是大括号括起来的范围,而修饰方法范围是整个函数。如将【Demo1】中的run方法改成如下的方式,实现的效果一样。
*【Demo4】:synchronized修饰一个方法
public synchronized void run() {
for (int i = 0; i < 5; i ++) {
try {
System.out.println(Thread.currentThread().getName() + ":" + (count++));
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
Synchronized作用于整个方法的写法。
写法一:
public synchronized void method()
{
// todo
}
写法二:
public void method()
{
synchronized(this) {
// todo
}
}
写法一修饰的是一个方法,写法二修饰的是一个代码块,但写法一与写法二是等价的,都是锁定了整个方法时的内容。
在用synchronized修饰方法时要注意以下几点:
class Parent {
public synchronized void method() { }
}
class Child extends Parent {
public synchronized void method() { }
}
在子类方法中调用父类的同步方法
class Parent {
public synchronized void method() { }
}
class Child extends Parent {
public void method() { super.method(); }
}
在定义接口方法时不能使用synchronized关键字。
构造方法不能使用synchronized关键字,但可以使用synchronized代码块来进行同步。
修饰一个静态的方法
Synchronized也可修饰一个静态方法,用法如下:
public synchronized static void method() {
// todo
}
我们知道静态方法是属于类的而不属于对象的。同样的,synchronized修饰的静态方法锁定的是这个类的所有对象。我们对Demo1进行一些修改如下:
【Demo5】:synchronized修饰静态方法
/**
* 同步线程
*/
class SyncThread implements Runnable {
private static int count;
public SyncThread() {
count = 0;
}
public synchronized static void method() {
for (int i = 0; i < 5; i ++) {
try {
System.out.println(Thread.currentThread().getName() + ":" + (count++));
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public synchronized void run() {
method();
}
}
调用代码:
SyncThread syncThread1 = new SyncThread();
SyncThread syncThread2 = new SyncThread();
Thread thread1 = new Thread(syncThread1, "SyncThread1");
Thread thread2 = new Thread(syncThread2, "SyncThread2");
thread1.start();
thread2.start();
结果如下:
SyncThread1:0
SyncThread1:1
SyncThread1:2
SyncThread1:3
SyncThread1:4
SyncThread2:5
SyncThread2:6
SyncThread2:7
SyncThread2:8
SyncThread2:9
syncThread1和syncThread2是SyncThread的两个对象,但在thread1和thread2并发执行时却保持了线程同步。这是因为run中调用了静态方法method,而静态方法是属于类的,所以syncThread1和syncThread2相当于用了同一把锁。这与Demo1是不同的。
修饰一个类
Synchronized还可作用于一个类,用法如下:
class ClassName {
public void method() {
synchronized(ClassName.class) {
// todo
}
}
}
我们把Demo5再作一些修改。
【Demo6】:修饰一个类
/**
* 同步线程
*/
class SyncThread implements Runnable {
private static int count;
public SyncThread() {
count = 0;
}
public static void method() {
synchronized(SyncThread.class) {
for (int i = 0; i < 5; i ++) {
try {
System.out.println(Thread.currentThread().getName() + ":" + (count++));
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
public synchronized void run() {
method();
}
}
其效果和【Demo5】是一样的,synchronized作用于一个类T时,是给这个类T加锁,T的所有对象用的是同一把锁。
总结:
A. 无论synchronized关键字加在方法上还是对象上,如果它作用的对象是非静态的,则它取得的锁是对象;如果synchronized作用的对象是一个静态方法或一个类,则它取得的锁是对类,该类所有的对象同一把锁。
B. 每个对象只有一个锁(lock)与之相关联,谁拿到这个锁谁就可以运行它所控制的那段代码。
C. 实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,所以尽量避免无谓的同步控制。
转载:http://www.importnew.com/21866.html
synchronized和lock区别
两者区别:
1.首先synchronized是java内置关键字,在jvm层面,Lock是个java类;
2.synchronized无法判断是否获取锁的状态,Lock可以判断是否获取到锁;
3.synchronized会自动释放锁(a 线程执行完同步代码会释放锁 ;b 线程执行过程中发生异常会释放锁),Lock需在finally中手工释放锁(unlock()方法释放锁),否则容易造成线程死锁;
4.用synchronized关键字的两个线程1和线程2,如果当前线程1获得锁,线程2线程等待。如果线程1阻塞,线程2则会一直等待下去,而Lock锁就不一定会等待下去,如果尝试获取不到锁,线程可以不用一直等待就结束了;
5.synchronized的锁可重入、不可中断、非公平,而Lock锁可重入、可判断、可公平(两者皆可)
6.Lock锁适合大量同步的代码的同步问题,synchronized锁适合代码少量的同步问题。
小例子:
package com.cn.test.thread.lock;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class LockTest {
private Lock lock = new ReentrantLock();
/*
* 使用完毕释放后其他线程才能获取锁
*/
public void lockTest(Thread thread) {
lock.lock();//获取锁
try {
System.out.println("线程"+thread.getName() + "获取当前锁"); //打印当前锁的名称
Thread.sleep(2000);//为看出执行效果,是线程此处休眠2秒
} catch (Exception e) {
System.out.println("线程"+thread.getName() + "发生了异常释放锁");
}finally {
System.out.println("线程"+thread.getName() + "执行完毕释放锁");
lock.unlock(); //释放锁
}
}
public static void main(String[] args) {
LockTest lockTest = new LockTest();
//声明一个线程 “线程一”
Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
lockTest.lockTest(Thread.currentThread());
}
}, "thread1");
//声明一个线程 “线程二”
Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
lockTest.lockTest(Thread.currentThread());
}
}, "thread2");
// 启动2个线程
thread2.start();
thread1.start();
}
}
执行结果:
线程thread2获取当前锁
线程thread2执行完毕释放锁
线程thread1获取当前锁
线程thread1执行完毕释放锁
例子二:
package com.cn.test.thread.lock;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class LockTest {
private Lock lock = new ReentrantLock();
/*
* 尝试获取锁 tryLock() 它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false
*/
public void tryLockTest(Thread thread) {
if(lock.tryLock()) { //尝试获取锁
try {
System.out.println("线程"+thread.getName() + "获取当前锁"); //打印当前锁的名称
Thread.sleep(2000);//为看出执行效果,是线程此处休眠2秒
} catch (Exception e) {
System.out.println("线程"+thread.getName() + "发生了异常释放锁");
}finally {
System.out.println("线程"+thread.getName() + "执行完毕释放锁");
lock.unlock(); //释放锁
}
}else{
System.out.println("我是线程"+Thread.currentThread().getName()+"当前锁被别人占用,我无法获取");
}
}
public static void main(String[] args) {
LockTest lockTest = new LockTest();
Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
lockTest.tryLockTest(Thread.currentThread());
}
}, "thread1");
//声明一个线程 “线程二”
Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
lockTest.tryLockTest(Thread.currentThread());
}
}, "thread2");
// 启动2个线程
thread2.start();
thread1.start();
}
}
执行结果:
线程thread2获取当前锁
我是线程thread1当前锁被别人占用,我无法获取
线程thread2执行完毕释放锁
例子三:
package com.cn.test.thread.lock;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class LockTest {
private Lock lock = new ReentrantLock();
public void tryLockParamTest(Thread thread) throws InterruptedException {
if(lock.tryLock(3000, TimeUnit.MILLISECONDS)) { //尝试获取锁 获取不到锁,就等3秒,如果3秒后还是获取不到就返回false
try {
System.out.println("线程"+thread.getName() + "获取当前锁"); //打印当前锁的名称
Thread.sleep(4000);//为看出执行效果,是线程此处休眠2秒
} catch (Exception e) {
System.out.println("线程"+thread.getName() + "发生了异常释放锁");
}finally {
System.out.println("线程"+thread.getName() + "执行完毕释放锁");
lock.unlock(); //释放锁
}
}else{
System.out.println("我是线程"+Thread.currentThread().getName()+"当前锁被别人占用,等待3s后仍无法获取,放弃");
}
}
public static void main(String[] args) {
LockTest lockTest = new LockTest();
Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
try {
lockTest.tryLockParamTest(Thread.currentThread());
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}, "thread1");
//声明一个线程 “线程二”
Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
try {
lockTest.tryLockParamTest(Thread.currentThread());
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}, "thread2");
// 启动2个线程
thread2.start();
thread1.start();
}
}
执行结果:
线程thread2获取当前锁
我是线程thread1当前锁被别人占用,等待3s后仍无法获取,放弃
线程thread2执行完毕释放锁
因为此时线程1休眠了4秒,线程2等待了3秒还没有获取到就放弃获取锁了,执行结束
将方法中的 Thread.sleep(4000)改为Thread.sleep(2000)执行结果如下:
因为此时线程1休眠了2秒,线程2等待了3秒的期间线程1释放了锁,此时线程2获取到锁,线程2就可以执行了
本文将以尽量简洁的方式介绍java中的volatile关键字。如果觉得写的不错,记得,如果写的不好欢迎批评指正,让我们一起进步!
1.volatile简介
说简单点,volatile就是表示某人或某物是不稳定的、易变的。
volatile作为java中的关键词之一,用以声明变量的值可能随时会别的线程修改,使用volatile修饰的变量会强制将修改的值立即写入主存,主存中值的更新会使缓存中的值失效(非volatile变量不具备这样的特性,非volatile变量的值会被缓存,线程A更新了这个值,线程B读取这个变量的值时可能读到的并不是是线程A更新后的值)。volatile会禁止指令重排。
2.volatile特性
volatile具有可见性、有序性,不具备原子性。
注意,volatile不具备原子性,这是volatile与java中的synchronized、java.util.concurrent.locks.Lock最大的功能差异,这一点在面试中也是非常容易问到的点。
下面来分别看下可见性、有序性、原子性:
原子性:如果你了解事务,那这个概念应该好理解。原子性通常指多个操作不存在只执行一部分的情况,如果全部执行完成那没毛病,如果只执行了一部分,那对不起,你得撤销(即事务中的回滚)已经执行的部分。
可见性:当多个线程访问同一个变量x时,线程1修改了变量x的值,线程1、线程2…线程n能够立即读取到线程1修改后的值。
有序性:即程序执行时按照代码书写的先后顺序执行。在Java内存模型中,允许编译器和处理器对指令进行重排序,但是重排序过程不会影响到单线程程序的执行,却会影响到多线程并发执行的正确性。(本文不对指令重排作介绍,但不代表它不重要,它是理解JAVA并发原理时非常重要的一个概念)。
3.volatile适用场景
适用于对变量的写操作不依赖于当前值,对变量的读取操作不依赖于非volatile变量。
适用于读多写少的场景。
可用作状态标志。
JDK中volatie应用:JDK中ConcurrentHashMap的Entry的value和next被声明为volatile,AtomicLong中的value被声明为volatile。AtomicLong通过CAS原理(也可以理解为乐观锁)保证了原子性。
4.volatile VS synchronized
volatilesynchronized修饰对象修饰变量修饰方法或代码段可见性11有序性11原子性01线程阻塞01对比这个表格,你会不会觉得synchronized完胜volatile,答案是否定的,volatile不会让线程阻塞,响应速度比synchronized高,这是它的优点。
转载:https://baijiahao.baidu.com/s?id=1595669808533077617&wfr=spider&for=pc
进一步了解可以参考](https://www.cnblogs.com/dolphin0520/p/3920373.html)