tensorflow 用cnn训练识别验证码(svm+ocr )

环境是python3.6+win10x64+tensorflow-gpu 1.11.0

用厦大嘉庚的教务系统的验证码作为案例
样例:
在这里插入图片描述

图像预处理

  1. 使用OpenCV-python直接以灰度读取图像
  2. 进行全局大津二值化
  3. 使用dfs算法去除噪点
  4. 通过投影法切割字母
  5. 用cv2.copyMakeBorder把图像扩充到统一规格16*16
import cv2

word_num = 'ABCDEFGHJKLMNPRSTUVWXYZ'
word_num = list(word_num)
word_number = {}
for i in range(len(word_num)):
    word_number[i] = word_num[i]
    
def process(img, min_area):
    _, img = cv2.threshold(img, 0, 255, cv2.THRESH_OTSU)  # 全局大津二值化
    img = clear_background(img, min_area)  # 去除噪点
    return img


def mark_clear_area(img, data, col, row, dire, flag):  # dfs深度搜索 dire为记录搜索的方向
    if row >= img.shape[0] or col >= img.shape[1] or col < 0 or row < 0:
        return data
    if not flag:
        if img[row, col] == 0:
            img[row, col] = 127  # 标记像素
            data += 1  # 连通像素点数量
            # dire = 1 = 0001为上
            # dire = 2 = 0010为下
            # dire = 4 = 0100为左
            # dire = 8 = 1000为右
            if dire & 1 != 1:
                data = mark_clear_area(img, data, col, row + 1, 2, flag)  # 向上搜索
            if dire & 8 != 8:
                data = mark_clear_area(img, data, col + 1, row, 4, flag)  # 向右搜索
            if dire & 2 != 2:
                data = mark_clear_area(img, data, col, row - 1, 1, flag)  # 向下搜索
            if dire & 4 != 4:
                data = mark_clear_area(img, data, col - 1, row, 8, flag)  # 向左搜索
    else:
        if img[row, col] == 127:
            img[row, col] = 255  # 设置为背景色
            if dire & 1 != 1:
                data = mark_clear_area(img, data, col, row + 1, 2, flag)  # 向上搜索
            if dire & 8 != 8:
                data = mark_clear_area(img, data, col + 1, row, 4, flag)  # 向右搜索
            if dire & 2 != 2:
                data = mark_clear_area(img, data, col, row - 1, 1, flag)  # 向下搜索
            if dire & 4 != 4:
                data = mark_clear_area(img, data, col - 1, row, 8, flag)
    return data


def clear_background(image, num):  # 去除噪点
    for row in range(0, image.shape[0]):
        for col in range(0, image.shape[1]):
            if image[row, col] == 0:
                number = mark_clear_area(image, 0, col, row, 0, False)  # 连通数量
                # print(number)
                if number < num:
                    mark_clear_area(image, 0, col, row, 0, True)  # 消除连通区域
    for row in range(0, image.shape[0]):
        for col in range(0, image.shape[1]):
            if image[row, col] == 127:
                image[row, col] = 0
    return image


def horizontal(image, hor_num):  # 水平投影
    img = image.copy()
    (h, w) = img.shape  # 返回高和宽
    # print(h,w)#s输出高和宽
    H = [0 for z in range(0, h)]
    # 记录每一行的波峰
    for i in range(0, h):  # 遍历一行
        for j in range(0, w):  # 遍历一列
            if img[i, j] != 255:  # 如果改点为黑点
                H[i] += 1  # 该列的计数器加一计数
    Hei = []
    i = 0
    while i != h:  # 标记水平投影非0点的起始点和长度
        if H[i] != 0:
            start = i
            count = 0
            while i != h:
                if H[i] == 0:
                    break
                else:
                    count += 1
                i += 1
            Hei.append([start, count])
        else:
            i += 1
    index = 0
    while index < len(Hei):  # 去除长度小于阈值的标记
        if Hei[index][1] < hor_num:
            del Hei[index]
            index -= 1
        index += 1
    return H, Hei


def vertical(image, ver_num):  # 垂直投影
    img = image.copy()
    (h, w) = img.shape  # 返回高和宽
    # print(h,w)#s输出高和宽
    W = [0 for z in range(0, w)]
    # 记录每一列的波峰
    for j in range(0, w):  # 遍历一列
        for i in range(0, h):  # 遍历一行
            if img[i, j] != 255:  # 如果改点为黑点
                W[j] += 1  # 该列的计数器加一计数
    Wid = []
    i = 0
    while i != w:  # 标记垂直投影非0点的起始点和长度
        if W[i] != 0:
            start = i
            count = 0
            while i != w:
                if W[i] == 0:
                    break
                else:
                    count += 1
                i += 1
            Wid.append([start, count])
        else:
            i += 1
    index = 0
    while index < len(Wid):  # 去除长度小于阈值的标记
        if Wid[index][1] < ver_num:
            del Wid[index]
            index -= 1
        index += 1
    return W, Wid

if __name__ == '__main__':
    import os
    import matplotlib.pyplot as plt
    from matplotlib import animation
    import seaborn as sns
    import cv2

    dir_path = './imgcode2'
    image = cv2.imread(dir_path + '\\' + os.listdir(dir_path)[2], 0)  # 读取图片[0]为第一张图片
    _, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)  # 全局大津二值化
    sns.set_style("whitegrid")  # 设置图形主图
    # 创建画布
    fig = plt.figure()
    im = plt.imshow(image, cmap='gray')
    plt.grid(False)


    def animate(i):
        for row in range(0, image.shape[0]):
            for col in range(0, image.shape[1]):
                if image[row, col] == 0:
                    number = mark_clear_area(image, 0, col, row, 0, False)  # 连通数量
                    if number < 5:
                        mark_clear_area(image, 0, col, row, 0, True)  # 消除连通区域
                    im.set_array(image)
                    return [im]


    ani = animation.FuncAnimation(fig, animate, frames=50, interval=500, blit=False)
    plt.show()
    image = clear_background(image, 5)

    w, wid = vertical(image, 5)
    plt.bar([i + 1 for i in range(len(w))], w)
    plt.show()
    error_img = 0
    fig = plt.figure()
    ax = []
    for i in range(3):
        ax_ = []
        for j in range(1, 5):
            ax_.append(fig.add_subplot(3, 4, i*4+j))
        ax.append(ax_)
    for i in range(len(wid)):
        pic = image[:, wid[i][0]:wid[i][0] + 9]
        ax[0][i].imshow(pic)
        ax[0][i].grid(False)
        h, hei = horizontal(pic, 8)
        h = h[::-1]
        ax[1][i].barh([i + 1 for i in range(len(h))], h)
        ax[1][i].grid(False)
        cut_img = pic[hei[0][0]:hei[0][0] + 11, :]
        cut_img = cv2.copyMakeBorder(cut_img, 3, 2, 4, 3, cv2.BORDER_CONSTANT,
                              value=[255, 255, 255])
        ax[2][i].imshow(cut_img)
        ax[2][i].grid(False)
    plt.show()

创建训练集

  • 事先用pytesseract + tesseract-ocr 识别后再手动修改,建立训练集
import cv2
import os
import improcessing as im
import numpy as np
import matplotlib.pyplot as plt

method = 1
method_name = ['svm', 'ocr']
if method_name[method] == 'svm':
    import pic_svm
elif method_name[method] == 'ocr':
    from PIL import Image
    import re
    try:
        import pytesseract as ocr
    except ImportError:
        method = 0
        import pic_svm

word_count = {}


def img_pro(dir_path, file_path, save_path):
    ver_num = 5
    hor_num = 8
    min_area = 5
    img = cv2.imread(dir_path + '\\' + file_path, flags=0)
    img = im.process(img, min_area)
    word =[]
    if method_name[method] == 'ocr':
        word_list = ocr.image_to_string(Image.fromarray(img), lang='eng', config='digits')  # ocr识别图像
        word_list = ''.join(re.split(r'[^A-Za-z]', word_list))  # 正则表达式提取字母
        word_list = word_list.upper()  # 转大写字母
        word_list = list(word_list)
        word = word_list

    __, wid = im.vertical(img, ver_num)
    pic = []
    cut_img = []
    error_img = 0
    for i in range(len(wid)):
        try:
            pic.append(img[:, wid[i][0]:wid[i][0] + 9])
            ___, hei = im.horizontal(pic[i], hor_num)
            # print(hei)
            cut_img.append(pic[i][hei[0][0]:hei[0][0] + 11, :])
            save_img = cv2.copyMakeBorder(cut_img[i], 3, 2, 4, 3, cv2.BORDER_CONSTANT, value=[255, 255, 255])
            error_img = save_img
            if method_name[method] == 'ocr':
                count = word_count[word_list[i]]
                count += 1
                word_count[word_list[i]] = count  # 计数
                cv2.imwrite(save_path + '/' + word_list[i] + '/' + str(word_count[word_list[i]]) + '.bmp', save_img)
            elif method_name[method] == 'svm':
                x = np.array(np.mat(pic_svm.get_feature(save_img)))  # 提取图像特征点
                number = int(pic_svm.predict(x)[0])  # 使用svm支持向量机识别
                simple_word = im.word_number[number]   # 将结果转为字母
                word.append(simple_word)
                count = word_count[simple_word]
                count += 1
                word_count[simple_word] = count  # 计数
                cv2.imwrite(save_path + '/' + simple_word + '/' + str(word_count[simple_word]) + '.bmp', save_img)  # 保存图片
        except IndexError:
            print(hei)
            word_count[26] += 1
            cv2.imwrite(save_path + '/error/' + str(word_count[26]) + '.bmp', error_img)
    print(''.join(word) + '\t', end='')
    print(word_count)


if __name__ == '__main__':
    dir_path = './imgcode'
    save_path = './pic'
    if not os.path.exists(save_path):  # 创建文件夹
        os.mkdir(save_path)
    for ch, i in zip(range(ord('A'), ord('Z') + 1), range(26)):  # 创建分类文件夹
        word_count[chr(ch)] = 0
        path = save_path + '/' + chr(ch)
        if not os.path.exists(path):
            os.mkdir(path)
    error_path = save_path + '/error'
    if not os.path.exists(error_path):  # 创建错误文件夹
        os.mkdir(error_path)
    for file_path in os.listdir(dir_path):  # 遍历文件夹
        print(file_path + '\t->\t', end='')
        img_pro(dir_path, file_path, save_path)

tensorflow 用cnn训练识别验证码(svm+ocr )_第1张图片
tensorflow 用cnn训练识别验证码(svm+ocr )_第2张图片

初步获得训练集之后,可以用svm训练,之后可批量生成验证码
这里也给出svm的训练,想看tensorflow的直接略过吧

训练svm

  1. 导入sklearn.svm的svm
  2. 特征点设为每列的黑点数,每行的黑点数
def get_feature(img):  # 提取图像特征点
    width, height = img.shape
    pixel_cnt_list = []
    for y in range(height):
        pix_cnt_x = 0
        for x in range(width):
            if img[y, x] != 255:  # 黑色点
                pix_cnt_x += 1
        pixel_cnt_list.append(pix_cnt_x)
    for x in range(width):
        pix_cnt_y = 0
        for y in range(height):
            if img[y, x] != 255:  # 黑色点
                pix_cnt_y += 1
        pixel_cnt_list.append(pix_cnt_y)
    return pixel_cnt_list
  1. 将训练集转换成svm的标签数据
def get_files(filename):  # 提取文件夹下文件名、目录
    class_train = []
    label_train = []
    word = 'ABCDEFGHJKLMNPRSTUVWXYZ'
    word = list(word)
    word_dirt = {}
    for i in range(len(word)):
        word_dirt[word[i]] = i
    for train_class in os.listdir(filename):
        for pic in os.listdir(filename + '/' + train_class):
            class_train.append(filename + '/' + train_class + '/' + pic)
            label_train.append(train_class)
    temp = np.array([class_train, label_train])
    temp = temp.transpose()
    # after transpose, images is in dimension 0 and label in dimension 1
    image_list = list(temp[:, 0])
    label_list = list(temp[:, 1])
    label_list = [word_dirt[i] for i in label_list]
    # print(label_list)
    return image_list, label_list


def batches(image_path, label):  # 生成svm标签数据
    x = []
    y = []
    for path, i in zip(image_path, label):
        image = cv2.imread(path, flags=0)
        datalist = get_feature(image)
        x.append(datalist)
        y.append(i)
    return np.array(y), np.array(x)
  1. 进行svm训练并保存模型
import numpy as np
import cv2
import os
from sklearn.svm import SVC  # 导入svm
from sklearn.externals import joblib

def trainSVM(y, x):
    clf = SVC(kernel='linear')
    rf = clf.fit(x, y)
    score_linear = clf.score(x, y)
    print("The score of linear is : %f" % score_linear)
    joblib.dump(rf, 'word_svm.model')


def predict(x):
    RF = joblib.load('word_svm.model')
    return RF.predict(x)


if __name__ == '__main__':
    array = get_files('./train_data')
    array = batches(array[0], array[1])
    trainSVM(array[0], array[1])

训练完成后,直接将特征点输入predict(x)就会返回判断值

tensorflow训练cnn

  1. 建立一个卷积神经网络
    可以使用tensorflow中文官网的http://www.tensorfly.cn/tfdoc/tutorials/mnist_pros.html深入MNIST的模型
    本质上就是用python把流程图画出来,设置好评价函数、反向传播函数。设置完成后建立session与C++后台对话。sess.run()开始,后台将实际的参数填充,运行。

因为验证码没有I、O、Q字母所以输出只设置为23维向量

import time
import tensorflow as tf
import os
import numpy as np
from PIL import Image
import random


def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


def conv_2d(x, w):
    return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                          strides=[1, 2, 2, 1], padding='SAME')


def get_files(filename):  # 提取文件夹下文件名、目录
    class_train = []
    label_train = []
    word = 'ABCDEFGHJKLMNPRSTUVWXYZ'
    word = list(word)
    word_dirt = {}
    for i in range(len(word)):
        word_dirt[word[i]] = i
    for train_class in os.listdir(filename):
        for pic in os.listdir(filename + '/' + train_class):
            class_train.append(filename + '/' + train_class + '/' + pic)
            label_train.append(train_class)
    temp = np.array([class_train, label_train])
    temp = temp.transpose()
    # after transpose, images is in dimension 0 and label in dimension 1
    image_list = list(temp[:, 0])
    label_list = list(temp[:, 1])
    label_list = [word_dirt[i] for i in label_list]
    # print(label_list)
    return image_list, label_list


def batches(image_path, label):  # 生成cnn标签数据
    x = []
    for path, i in zip(image_path, label):
        image = np.array(Image.open(path).convert('L'))
        image_list = []
        rows = image.shape[0]
        cols = image.shape[1]
        image = abs(255 - image)
        max_px = np.max(image)
        for row in range(rows):
            for col in range(cols):
                image_list.append(image[row, col] / max_px)
        image_list.insert(0, i)
        x.append(image_list)
    return x


def get_batches(batches):
    x = []
    y = []
    for iter in batches:
        out = [0 for i in range(23)]
        out[iter[0]] = 1
        y.append(out)
        x.append(iter[1:])
    return np.array(x), np.array(y)


def get_batche(batches, num):
    batch = random.sample(batches, num)
    x = []
    y = []
    for iter in batch:
        out = [0 for i in range(23)]
        out[iter[0]] = 1
        y.append(out)
        x.append(iter[1:])
    return np.array(x), np.array(y)


if __name__ == '__main__':

    # Create the model
    # placeholder
    x = tf.placeholder(tf.float32, shape=[None, 16*16], name='input_x')
    y_ = tf.placeholder(tf.float32, shape=[None, 23], name='input_y')

    # first

    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    x_image = tf.reshape(x, [-1, 16, 16, 1])
    h_conv1 = tf.nn.relu(tf_tools.conv_2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)

    # second
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(tf_tools.conv_2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)

    W_fc1 = weight_variable([4 * 4 * 64, 1024])
    b_fc1 = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 4 * 4 * 64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

    # dropout
    keep_prob = tf.placeholder(tf.float32, name='keep_prob')
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    # softmax
    W_fc2 = weight_variable([1024, 23])
    b_fc2 = bias_variable([23])

    y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

    cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.add_to_collection('pred_network', y_conv)

    array = get_files('./train_data')
    array = batches(array[0], array[1])
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver(max_to_keep=1)
        time_start = time.time()
        for i in range(2000):
            batch = get_batche(array, 50)  # 样本数量
            if i % 100 == 0:
                train_accuracy = accuracy.eval(feed_dict={
                    x: batch[0], y_: batch[1], keep_prob: 1.0})
                print("step %d, training accuracy %f" % (i, train_accuracy))
            train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})  # 训练模型
        x_data, y_data = tf_tools.get_batches(array)  
        print("test accuracy %g" % accuracy.eval(feed_dict={x: x_data, y_: y_data, keep_prob: 1.0}))

        time_end = time.time()
        print('totally cost ' + str(time_end-time_start) + 's')
        saver.save(sess, './ckpt/mnist.ckpt', global_step=0)  # 保存模型

tensorflow 用cnn训练识别验证码(svm+ocr )_第3张图片
百分之百的准确率!(cnn牛逼!)
训练完成后就可以测试数据啦
用saver.restore导入模型

ckpt = tf.train.get_checkpoint_state('./ckpt/')
saver = tf.train.import_meta_graph(ckpt.model_checkpoint_path + '.meta')
print(ckpt.model_checkpoint_path)
with tf.Session() as sess:
    saver.restore(sess, ckpt.model_checkpoint_path)

测试代码

import cv2
import os
import tensorflow as tf
import tf_tools as tf_t
import improcessing as im
import numpy as np


if __name__ == '__main__':
    dir_path = './imgcode2'
    save_path = './pic2'
    if not os.path.exists(save_path):
        os.mkdir(save_path)
    ckpt = tf.train.get_checkpoint_state('./ckpt/')
    saver = tf.train.import_meta_graph(ckpt.model_checkpoint_path + '.meta')
    print(ckpt.model_checkpoint_path)
    array = tf_t.get_files('./train_data')
    array = tf_t.batches(array[0], array[1])

    with tf.Session() as sess:
        saver.restore(sess, ckpt.model_checkpoint_path)
        y = tf.get_collection('pred_network')[0]
        graph = tf.get_default_graph()
        input_x = graph.get_operation_by_name('input_x').outputs[0]
        keep_prob = graph.get_operation_by_name('keep_prob').outputs[0]

        ver_num = 5  # 垂直投影阈值
        hor_num = 8  # 水平投影阈值
        min_area = 5  # 连通域面积阈值
        for file_path in os.listdir(dir_path):  # 遍历文件夹
            print(file_path + '\t->\t', end='')
            img = cv2.imread(dir_path + '\\' + file_path, flags=0)  # 读取图片
            img = im.process(img, min_area)

            __, wid = im.vertical(img, ver_num)  # 得到垂直投影标记
            pic = []
            cut_img = []
            test_word = ''
            datalist = []
            for i in range(len(wid)):  # 提取验证码四个字母特征点
                pic.append(img[:, wid[i][0]:wid[i][0] + 9])  # 垂直切割图像
                ___, hei = im.horizontal(pic[i], hor_num)  # 得到水平投影标记
                # print(hei)
                cut_img.append(pic[i][hei[0][0]:hei[0][0] + 11, :])  # 水平切割图像
                save_img = cv2.copyMakeBorder(cut_img[i], 3, 2, 4, 3, cv2.BORDER_CONSTANT,
                                              value=[255, 255, 255])  # 将图像大小扩充到16*16
                save_img = np.abs(255 - save_img)
                data = save_img / np.max(save_img)
                xt = []
                for row in range(data.shape[0]):
                    for col in range(data.shape[1]):
                        xt.append(data[row, col])
                datalist.append(xt)
            x = np.array(datalist)
            result = sess.run(y, feed_dict={input_x: x, keep_prob: 1.0})
            for iter in result:
                i = np.where(iter == np.max(iter))[0][0]
                test_word += im.word_number[i]  # 将结果转为字母
            print(test_word)
            cv2.imwrite(save_path + '/' + test_word + '.bmp', img)  # 保存结果

tensorflow 用cnn训练识别验证码(svm+ocr )_第4张图片
tensorflow 用cnn训练识别验证码(svm+ocr )_第5张图片
大功告成!

你可能感兴趣的:(python)