------Java培训、Android培训、iOS培训、.Net培训、期待与您交流! -------
1.多线程
进程:是一个正在执行中的程序。
每一个进程执行都有一个执行顺序。该顺序是一个执行路径,或者叫一个控制单元。
线程:就是进程中的一个独立的控制单元。
线程在控制着进程的执行。
一个进程中至少有一个线程。
Java VM 启动的时候会有一个进程java.exe.
该进程中至少一个线程负责java程序的执行。
而且这个线程运行的代码存在于main方法中。
该线程称之为主线程。
扩展:其实更细节说明jvm,jvm启动不止一个线程,还有负责垃圾回收机制的线程。
1,如何在自定义的代码中,自定义一个线程呢?
通过对api的查找,java已经提供了对线程这类事物的描述。就Thread类。
创建线程的第一种方式:继承Thread类。
步骤:
1,定义类继承Thread。
2,复写Thread类中的run方法。
目的:将自定义代码存储在run方法。让线程运行。
3,调用线程的start方法,
该方法两个作用:启动线程,调用run方法。
发现运行结果每一次都不同。
因为多个线程都获取cpu的执行权。cpu执行到谁,谁就运行。
明确一点,在某一个时刻,只能有一个程序在运行。(多核除外)
cpu在做着快速的切换,以达到看上去是同时运行的效果。
我们可以形象把多线程的运行行为在互相抢夺cpu的执行权。
这就是多线程的一个特性:随机性。谁抢到谁执行,至于执行多长,cpu说的算。
为什么要覆盖run方法呢?
Thread类用于描述线程。
该类就定义了一个功能,用于存储线程要运行的代码。该存储功能就是run方法。
也就是说Thread类中的run方法,用于存储线程要运行的代码。
创建线程的第二种方式:实现Runable接口
步骤:
1,定义类实现Runnable接口
2,覆盖Runnable接口中的run方法。
将线程要运行的代码存放在该run方法中。
3,通过Thread类建立线程对象。
4,将Runnable接口的子类对象作为实际参数传递给Thread类的构造函数。
为什么要将Runnable接口的子类对象传递给Thread的构造函数。
因为,自定义的run方法所属的对象是Runnable接口的子类对象。
所以要让线程去指定指定对象的run方法。就必须明确该run方法所属对象。
5,调用Thread类的start方法开启线程并调用Runnable接口子类的run方法。
实现方式和继承方式有什么区别呢?
实现方式好处:避免了单继承的局限性。
在定义线程时,建立使用实现方式。
两种方式区别:
继承Thread:线程代码存放Thread子类run方法中。
实现Runnable,线程代码存在接口的子类的run方法。
多线程的运行出现了安全问题。
/*
需求:简单的卖票程序。
多个窗口卖票。
*/
class Ticket implements Runnable//extends Thread
{
private int tick = 100;
public void run()
{
while(true)
{
if(tick>0)
{
//显示线程名及余票数
System.out.println(Thread.currentThread().getName()+"....sale : "+ tick--);
}
}
}
}
class TicketDemo
{
public static void main(String[] args)
{
//创建Runnable接口子类的实例对象
Ticket t = new Ticket();
//有多个窗口在同时卖票,这里用四个线程表示
Thread t1 = new Thread(t);//创建了一个线程
Thread t2 = new Thread(t);
Thread t3 = new Thread(t);
Thread t4 = new Thread(t);
t1.start();//启动线程
t2.start();
t3.start();
t4.start();
}
}
线程的安全问题:容易出现错误信息。
问题的原因:
当多条语句在操作同一个线程共享数据时,一个线程对多条语句只执行了一部分,还没有执行完,
另一个线程参与进来执行。导致共享数据的错误。
解决办法:
对多条操作共享数据的语句,只能让一个线程都执行完。在执行过程中,其他线程不可以参与执行。
Java对于多线程的安全问题提供了专业的解决方式。
就是同步代码块。
synchronized(对象)
{
需要被同步的代码
}
对象如同锁。持有锁的线程可以在同步中执行。
没有持有锁的线程即使获取cpu的执行权,也进不去,因为没有获取锁。
可理解为火车上的卫生间。
同步的前提:
1,必须要有两个或者两个以上的线程。
2,必须是多个线程使用同一个锁。
必须保证同步中只能有一个线程在运行。
好处:解决了多线程的安全问题。
弊端:多个线程需要判断锁,较为消耗资源。
同步函数::
在函数上加上synchronized修饰符即可。
3、同步的前提
a,必须要有两个或者两个以上的线程。
b,必须是多个线程使用同一个锁。
4、同步的利弊
好处:解决了多线程的安全问题。
弊端:多个线程需要判断锁,较为消耗资源。
5、如何寻找多线程中的安全问题
a,明确哪些代码是多线程运行代码。
b,明确共享数据。
c,明确多线程运行代码中哪些语句是操作共享数据的。
同步函数用的是哪一个锁呢?
函数需要被对象调用。那么函数都有一个所属对象引用。就是this。
所以同步函数使用的锁是this。
如果同步函数被静态修饰后,使用的锁是什么呢?
通过验证,发现不在是this。因为静态方法中也不可以定义this。静态进内存时,内存中没有本类对象,但是一定有该类对应的字节码文件对象。如:类名.class 该对象的类型是Class
几个小问题:
1)wait(),notify(),notifyAll(),用来操作线程为什么定义在了Object类中?
a,这些方法存在与同步中。
b,使用这些方法时必须要标识所属的同步的锁。同一个锁上wait的线程,只可以被同一个锁上的notify唤醒。
c,锁可以是任意对象,所以任意对象调用的方法一定定义Object类中。
2)wait(),sleep()有什么区别?
wait():释放cpu执行权,释放锁。
sleep():释放cpu执行权,不释放锁。
3)为甚么要定义notifyAll?
因为在需要唤醒对方线程时。如果只用notify,容易出现只唤醒本方线程的情况。导致程序中的所以线程都等待。
2、JDK1.5中提供了多线程升级解决方案。
将同步synchronized替换成显示的Lock操作。将Object中wait,notify,notifyAll,替换成了Condition对象。该Condition对象可以通过Lock锁进行获取,并支持多个相关的Condition对象。
/*
02.给卖票程序示例加上同步代码块。
03.*/
04.class Ticket implements Runnable
05.{
06. private int tick=100;
07. Object obj = new Object();
08. public void run()
09. {
10. while(true)
11. {
12. //给程序加同步,即锁
13. synchronized(obj)
14. {
15. if(tick>0)
16. {
17. try
18. {
19. //使用线程中的sleep方法,模拟线程出现的安全问题
20. //因为sleep方法有异常声明,所以这里要对其进行处理
21. Thread.sleep(10);
22. }
23. catch (Exception e)
24. {
25. }
26. //显示线程名及余票数
27. System.out.println(Thread.currentThread().getName()+"..tick="+tick--);
28. }
29. }
30. }
31. }
32.}
死锁问题
/*
写一个死锁程序
*/
//定义一个类来实现Runnable,并复写run方法
class LockTest implements Runnable
{
private boolean flag;
LockTest(boolean flag)
{
this.flag=flag;
}
public void run()
{
if(flag)
{
while(true)
{
synchronized(LockClass.locka)//a锁
{
System.out.println(Thread.currentThread().getName()+"------if_locka");
synchronized(LockClass.lockb)//b锁
{
System.out.println(Thread.currentThread().getName()+"------if_lockb");
}
}
}
}
else
{
while(true)
{
synchronized(LockClass.lockb)//b锁
{
System.out.println(Thread.currentThread().getName()+"------else_lockb");
synchronized(LockClass.locka)//a锁
{
System.out.println(Thread.currentThread().getName()+"------else_locka");
}
}
}
}
}
}
//定义两个锁
class LockClass
{
static Object locka = new Object();
static Object lockb = new Object();
}
class DeadLock
{
public static void main(String[] args)
{
//创建2个进程,并启动
new Thread(new LockTest(true)).start();
new Thread(new LockTest(false)).start();
}
}
线程之间的通讯
/*
生产者生产商品,供消费者使用
有两个或者多个生产者,生产一次就等待消费一次
有两个或者多个消费者,等待生产者生产一次就消费掉
*/
import java.util.concurrent.locks.*;
class Resource
{
private String name;
private int count=1;
private boolean flag = false;
//多态
private Lock lock=new ReentrantLock();
//创建两Condition对象,分别来控制等待或唤醒本方和对方线程
Condition condition_pro=lock.newCondition();
Condition condition_con=lock.newCondition();
//p1、p2共享此方法
public void setProducer(String name)throws InterruptedException
{
lock.lock();//锁
try
{
while(flag)//重复判断标识,确认是否生产
condition_pro.await();//本方等待
this.name=name+"......"+count++;//生产
System.out.println(Thread.currentThread().getName()+"...生产..."+this.name);//打印生产
flag=true;//控制生产\消费标识
condition_con.signal();//唤醒对方
}
finally
{
lock.unlock();//解锁,这个动作一定执行
}
}
//c1、c2共享此方法
public void getConsumer()throws InterruptedException
{
lock.lock();
try
{
while(!flag)//重复判断标识,确认是否可以消费
condition_con.await();
System.out.println(Thread.currentThread().getName()+".消费."+this.name);//打印消费
flag=false;//控制生产\消费标识
condition_pro.signal();
}
finally
{
lock.unlock();
}
}
}
//生产者线程
class Producer implements Runnable
{
private Resource res;
Producer(Resource res)
{
this.res=res;
}
//复写run方法
public void run()
{
while(true)
{
try
{
res.setProducer("商品");
}
catch (InterruptedException e)
{
}
}
}
}
//消费者线程
class Consumer implements Runnable
{
private Resource res;
Consumer(Resource res)
{
this.res=res;
}
//复写run
public void run()
{
while(true)
{
try
{
res.getConsumer();
}
catch (InterruptedException e)
{
}
}
}
}
class ProducerConsumer
{
public static void main(String[] args)
{
Resource res=new Resource();
new Thread(new Producer(res)).start();//第一个生产线程 p1
new Thread(new Consumer(res)).start();//第一个消费线程 c1
new Thread(new Producer(res)).start();//第二个生产线程 p2
new Thread(new Consumer(res)).start();//第二个消费线程 c2
}
}