深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )

写一个自己想要的“set”,想实现什么功能直接在里面添加。STL虽然把set封装的很好,很强大,易于扩展,但是正由于兼容性很好,封装太多层,牺牲了很多性能。废话不多说,先晒出我的测试结果:

测试用的是谷歌codejam的一道题,提供了一百个测试用例,这道题需要频繁调用set的插入与删除,用来测试再好不过。

题目地址:https://code.google.com/codejam/contest/6364486/dashboard(需要小工具哦)

下面是我下载的一个AC代码

#include
#include
#include
using namespace std;

ifstream infile;
ofstream outfile;
const int MAXN = 500005;

int X[MAXN];
int S[MAXN];
long long sum[MAXN];

void erase_one(multiset &s, long long x) {
	auto it = s.find(x);
	auto it1 = it;
	it1++;
	s.erase(it++);
}

void solve() {
	int N, O;
	long long D;
	infile >> N >> O >> D;
	int X1, X2, A, B, C, M, L;
	infile >> X1 >> X2 >> A >> B >> C >> M >> L;
	X[1] = X1, X[2] = X2;
	for (int i = 3; i <= N; i++) {
		X[i] = (1LL * A * X[i - 1] + 1LL * B * X[i - 2] + C) % M;
	}
	for (int i = 1; i <= N; i++) {
		S[i] = X[i] + L;
		sum[i] = sum[i - 1] + S[i];
	}
	int cnt_odd = 0;
	int l = 1;
	multiset s;
	long long ans = -0x3f3f3f3f3f3f3f3fLL;
	for (int i = 1; i <= N; i++) {
		s.insert(sum[i - 1]);
		cnt_odd += S[i] & 1;
		while (cnt_odd > O) {
			erase_one(s, sum[l - 1]);
			//s.erase_unique(sum[l - 1]);
			cnt_odd -= S[l] & 1;
			l++;
		}
		auto it = s.lower_bound(sum[i] - D);
		if (it != s.end()) {
			ans = std::max(ans, sum[i] - *it);
		}
	}
	if (ans == -0x3f3f3f3f3f3f3f3fLL) {
		outfile << "IMPOSSIBLE" << endl;
	}
	else {
		outfile << ans << endl;
	}
}

int main() {
	infile.open("F:\\谷歌下载\\A-large-practice.in");
	outfile.open("F:\\谷歌下载\\A-large-practice.out");
	int T;
	infile >> T;
	for (int i = 1; i <= T; i++) {
		cout << i << endl;
		outfile << "Case #" << i << ": ";
		solve();
	}
	return 0;
}

 

深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第1张图片

for循环中频繁插入删除,大部分测试用例N都是等于50 万,我们来看看用时

深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第2张图片

14分钟,如果你在做谷歌笔试题,这个时间可能会让你抓狂。

再看看用了自己写的set后

深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第3张图片

深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第4张图片

你没看错,仅需要一分钟19秒。快了接近十倍。

再看看结果对不对

深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第5张图片

显示correct是对的。

是我的算法效率更高?我看了源码,并不是,大牛们在设计STL考虑到兼容性,可扩展性,不可避免的损失了一部分性能。

废话不多说上代码:

先给红黑树搞个数据结构,就是五大点,左右孩子,父母,key,颜色color;两个函数分别是寻找前驱,寻找后继,因为在后面的迭代器与类中都要用到,为了避免代码重复,放在了结构体中。(全局函数也行)

template
struct RB_TreeNode 
{
	RB_TreeNode * left;
	RB_TreeNode * right;
	RB_TreeNode * p;
	T key;
	color color;
	RB_TreeNode (T x,RB_TreeNode* _Guard) :key(x), left(_Guard), right(_Guard), p(_Guard), color(red) {};
	RB_TreeNode () : key(T()),left(NULL), right(NULL), p(NULL), color(black) {};
	RB_TreeNode(T val) :key(val),left(NULL), right(NULL), p(NULL), color(black) {};
	void operator=(RB_TreeNode& oth) {
		left = oth.left;
		color = oth.color;
		right = oth.right;
		key = oth.key;
		p = oth.p;
	}

	//寻找前驱
	RB_TreeNode* findFront(RB_TreeNode* _Guard)
	{
		RB_TreeNode* t = this;
		if (t == _Guard) return t;
		if (t->left != _Guard)
		{
			 t = t->left;
			while (t->right != _Guard)
				t = t->right;
			return t;
		}
		else
		{
			while (t->p != _Guard&&t == t->p->left)
				t = t->p;
			return t->p;
		}
	}

	//寻找后继
	RB_TreeNode* findSucceed(RB_TreeNode* _Guard)
	{
		RB_TreeNode* t = this;
		if (t == _Guard) return t;
		if (t->right != _Guard)
		{
			t = t->right;
			while (t->left != _Guard)
				t = t->left;
			return t;
		}
		else
		{
			while (t->p != _Guard&&t == t->p->right)
				t = t->p;
			return t->p;
		}
	}
};

那既然是红黑树,不可避免要说到它的五个特性:

1 每个节点非黑即红;

2 根节点黑色

3 每个叶节点黑色

4 如果节点为红色,则俩孩子都为黑色

5 对于每个节点,该节点到叶节点的每条路径黑高度都相同

我们来看看这种数据结构有什么好处,在此之前,先证明一个公式,以x为根的节点内节点个数至少是2的bh次方减一个,对于高度为0的节点显然成立,为0;每个内节点都有两个子女,若X的黑高度为bh,则儿子的黑高度至少为bh-1,如果这个公式对于子女成立,则对于跟至少有2^(bh-1)-1+2^(bh-1)-1=2^bh-1个节点,归纳假设成立。若树内节点总数为n,则有n>=2^bh-1;而由性质1,4可知,黑节点个数大于等于红色节点个数的,故总高度h<=bh*2;因此n>=2^(h/2)-1;得到高度h<=2lg(n+1);这意味着搜索时间将是对数时间。

当然了,红黑树的优势不止于此,不然直接使用AVL树好了,搜索时间更佳,红黑树另一个特性是删除后所执行的旋转操作量级是O(1),而AVL树是O(lgn),而且红黑树对插入删除节点没有AVL树那么敏感。

至于红黑树的插入删除先留在后面讲插入删除代码的时候讲。

下面一部分一部分介绍代码,总代码放在最后

template
struct rbtree_iterator :public iterator {
	typedef rbtree_iterator iterator;
	typedef RB_TreeNode* link_type;
	typedef rbtree_iterator self;
	link_type node;
	link_type _Guard;

	rbtree_iterator() {};
	rbtree_iterator(const link_type& x,const link_type& g):node(x),_Guard(g) {};
	rbtree_iterator(const iterator& it) :node(it.node), _Guard(it._Guard) {};
	
	
	self& operator=(const self& oth) { node = oth.node; return *this; };
	ref operator*() const { return node->key; };
	ptr operator->() const { return &(node->key); };
	self& operator++() { node = node->findSucceed(_Guard); return *this; };
	self operator++(int) { self tmp = *this; node = node->findSucceed(_Guard); return tmp; };
	self& operator--() { node = node->findFront(_Guard); return *this; };
	self operator--(int) { self tmp = *this; node = node->findFront(_Guard); return tmp; };
	bool operator==(const self& oth) { return node == oth.node; };
	bool operator!=(const self& oth) { return !(node == oth.node); };

};

为了与STL契合,必须为RBTree设计一个专属迭代器的类,在这里我继承了iterator类的iterator

bidirectional_iterator_tag 是可向前可向后的迭代器,迭代器的类型划分,具体的可以看STL源码剖析,里面很详细。

在迭代器这个类中,有一个link_type类型的节点,在这里他的类型就是我们树的节点类型,RB_TreeNode*,之后我们通过迭代器的构造函数将RBTree的节点传进来,通过操作这个节点来操作红黑树。类中主要重载了平时指针所用到的操作符诸如++,--,*,->等等;

 

深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第6张图片

在类的开始,我写了一个仿函数,作为RBTree比较函数的默认参数,如果对象重载了小于号,则无需传入比较函数,注意到我们将给迭代器类模板参数进行了限定,并进行了重命名,参数限定,是为了与我们的类匹配,重命名,Emmmm,STL迭代器都叫这名字。

然后就是构造函数与操作符重载

	RBTree(const keycompare& comp = keycompare());//默认构造函数
	RBTree(const RBTree& oth);
	RBTree(RBTree&& oth);//移动构造函数
    template
	RBTree(_itr begin, _itr end);//如果传入的是迭代器
	
	
	virtual~RBTree();

	///操作符重载
	RBTree& operator=(const RBTree& oth);
	RBTree& operator=(RBTree&& oth);
	const_iterator operator[](int i);

这里是一些功能函数(基本想要实现的都有)

	void clear();//清空树
	int size();//返回树的数量
	bool empty();//判空
	int count(T val);//与val相等的元素的数量
	
	void insert(T value);//插入元素,可重复
	void insert_unique(T value);//插入元素,如果重复,后来的会代替现在的。
	

	//想怎么删除,就怎么删除
	void erase_unique(T value);//删除一个等于value的元素
	void erase_equal(T value); //删除所有等于value的元素
	void erase(const_iterator& l, const_iterator& r);//删除迭代器区间的元素
	void erase(const_iterator& start, int n);//删除从指定迭代器开始的n个元素
	void erase(const_iterator& it);//删除迭代器指向的元素

	////你要的迭代器  我都有	
	const_iterator begin();//返回最小元素的迭代器
	const_iterator end();  //返回一个边界,跟STL其他容器的end()差不多
	const_iterator back(); //返回最大元素的迭代器
	const_iterator start(); //返回一个边界,只不过是前边界,实际与end()地址相同,为了区别写了这么个函数
	const_iterator find(T val);//寻找指定元素第一次出现,返回一个迭代器;
	const_iterator findlast(T val);//寻找指定元素最后一次出现,返回一个迭代器;

	const_iterator lower_bound(T val);//如果元素存在,返回它第一次出现时的迭代器,若不存在返回它下边界迭代器
	const_iterator upper_bound(T val);//元素存在,返回最后一次出现迭代器,不存在,返回上边界迭代器

这些函数都被我一一测试过都可用,至于具体实现,看最后代码。

 

为了实现上面的功能,写了以下辅助函数

   //测试用的函数
	void pre_traverse();
	void mid_traverse(T* pt = NULL);
	void post_traverse();
	void print();
	RB_TreeNode* guard();
	RB_TreeNode * getroot();


private:
	void RBerase(RB_TreeNode* node);//删除函数
	RB_TreeNode*  RBTree_serch(T value, RB_TreeNode* beginRoot);//寻找函数
	void RBTree_insert(T value, bool isunique);//插入函数
	void Left_Rotate(RB_TreeNode * t);//左旋
	void Right_Rotate(RB_TreeNode * t);//右旋
	void RBDELETE_Fixup(RB_TreeNode * t);//删除后调整红黑特性
	void RBINSERT_Fixup(RB_TreeNode * t);//插入后调整红黑特性
	RB_TreeNode* findFront(RB_TreeNode* t);//寻找前驱
	RB_TreeNode* findSucceed(RB_TreeNode * t);//寻找后继
	const_iterator findFandB(RB_TreeNode* target, bool isForward);//寻找与指定值相等的最前面元素与最后面元素

	RB_TreeNode * copyTree(const RB_TreeNode* oth, RB_TreeNode* p,  RB_TreeNode*const& Guard);//拷贝
	void distroy(RB_TreeNode* root);//销毁
	int findindex(RB_TreeNode* root, int num, RB_TreeNode*& tar, int& index);
	void relationGuard();
	
	void printNode(RB_TreeNode * outT);
	RB_TreeNode* _guard;
	RB_TreeNode* _root;
	int _len;
	keycompare com;
	friend ostream& operator<<(ostream &out, RB_TreeNode * outT);

下面讲一讲红黑树的插入:

具体代码:

	template>
	void RBTree::RBTree_insert(T value, bool isunique) {
		RB_TreeNode * Tnode = new RB_TreeNode(value, _guard);
		RB_TreeNode * tmp = _root;
		RB_TreeNode * Ptmp = _guard;
		if (_root == _guard)//如果插入的节点是第一个节点,相当于初始化根节点
		{
			_root = Tnode;
			_root->color = black;
			_len++;
			_guard->left = _root;
			_guard->right = _root;
			return;
		}

		//如果插入的节点小于最小值,直接插在最左边,并更新最小值节点
		if (com(value, _guard->left->key)) {
			Tnode->p = _guard->left;
			_guard->left->left = Tnode;
			_guard->left = Tnode;
		}
		//如果插入的节点大于等于最大值,直接插在最右边,更新最大值节点
		else if (!com(value, _guard->right->key)) {
			if (!com(_guard->right->key, value) && isunique) {
				swap(_guard->right->key, tmp->key);
				delete Tnode;
				return;
			}
			Tnode->p = _guard->right;
			_guard->right->right = Tnode;
			_guard->right = Tnode;
		}
		else {

			///以上三种情况都不属于寻找合适的插入节点,就一直往下找,直到边界条件(找到了空节点,在我这是_guard)
			while (tmp != _guard)
			{
				Ptmp = tmp;
				if (com(value, tmp->key))
					tmp = tmp->left;
				else if (com(tmp->key, value))
					tmp = tmp->right;
				else {
					if (isunique) {
						swap(Tnode->key, tmp->key);
						delete Tnode;
						return;
					}
					tmp = tmp->right;
				}
			}
			///更新插入节点的父亲,以及该父亲的孩子须得指向它
			Tnode->p = Ptmp;
			if (com(Tnode->key, Ptmp->key))
				Ptmp->left = Tnode;
			else
				Ptmp->right = Tnode;
		}
		///如果插入节点的父亲是红色,则违反了红黑树红黑特性,需要调整
		if (Tnode->p->color == red)
			RBINSERT_Fixup(Tnode);
		_len++;///别忘了更新元素数目
	}

需要注意的是,一般树的边界都是NULL,在这里我有个特殊节点_guard,是所有叶节点的孩子,也就是说,在这里他就是边界,而且它也是 根_root的父母,其左右孩子分别指向最小值跟最大值,所以在插入的时候要注意更新

插入节点的父亲如果是红色,由于插入节点的颜色默认为红色,此时便违反了红黑树性质4中的如果节点颜色为红,则孩子必须为黑。这种情况我们需要调整红黑树,也就是我函数中的

	void RBDELETE_Fixup(RB_TreeNode * t);//删除后调整红黑特性
	void RBINSERT_Fixup(RB_TreeNode * t);//插入后调整红黑特性

在讲这个之前,先讲一讲左旋与右旋,我转载了一个有趣而生动的图(博客地址,图上有):

  • 深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第7张图片
  • 深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第8张图片
  • 这两幅图分别是左旋与右旋;
  • 其实看左旋与右旋很简单,如图1中的左旋E是S的父亲,我们看到无论怎么旋转,下面三个子节点,E左,E右,S右,从横向来看,相对位置没变过,其实只要令S的左孩子为E,然后顺序把三个孩子挂上就行了。当然了,要维护节点中的P;
  • 下面是左旋,右旋代码,逻辑很简单,就是要注意细节,别忘了维护他们的父节点,简单来说,就是A的儿子变成了B,那么别忘了把B的父亲变成A;
    		//////左旋
    	template>
    	void RBTree::Left_Rotate(RB_TreeNode * t)
    	{
    		if (t == _guard || t->right == _guard)
    		{
    			cout << "左旋节点或节点右孩子不应为空" << endl;
    			return;
    		}
    		RB_TreeNode * tmp = t->right;
    		tmp->p = t->p;
    		if (t->p == _guard)
    		{
    			_root = tmp;
    		}
    		else if (t == t->p->left)
    			t->p->left = tmp;
    		else
    			t->p->right = tmp;
    		t->p = tmp;
    		t->right = tmp->left;
    		if (tmp->left != _guard)
    			tmp->left->p = t;
    		tmp->left = t;
    	}
    
    	////右旋
    	template>
    	void RBTree::Right_Rotate(RB_TreeNode * t)
    	{
    		if (!t || !t->left)
    		{
    			cout << "右旋节点或节点左孩子不应为空" << endl;
    			return;
    		}
    		RB_TreeNode * tmp = t->left;
    		tmp->p = t->p;
    		if (t->p == _guard)
    		{
    			_root = tmp;
    		}
    		else if (t == t->p->left)
    			t->p->left = tmp;
    		else
    			t->p->right = tmp;
    		t->p = tmp;
    		t->left = tmp->right;
    		if (tmp->right != _guard)
    			tmp->right->p = t;
    		tmp->right = t;
    	}

    调整红黑树的颜色,主要分三种情况(当插入节点父亲为红色的时候)

  • 下面所有图均转载自:https://blog.csdn.net/lucienduan/article/details/38880523

  • 第一种情况:如图叔叔是红色,此时将父亲跟叔叔变成黑色,祖父变成红色,这时我们令node等于祖父,如果祖父的父亲还是红色,继续进入循环,如果祖父父亲是黑色,则退出。也就是刚才node面临的情况现在到了祖父头上

  • 深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第9张图片

  • 第二种情况与第三种情况放一起讲,我们把第二种情况进行一个左旋,变成第三种情况,叔叔是黑色。这种情况将祖父节点来一个右旋,并把祖父节点变成红色,父节点变成黑色,这样黑高度保持不变,也满足了性质4

  • 深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第10张图片

  • 深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第11张图片

  • 总结一下。红黑树插入,如果插入节点父亲是红色,则需要调整红黑树。此时可分为三种情况,其实是两种情况,当叔叔是红色和当叔叔是黑色,当叔叔是红色,直接把叔叔跟父亲染黑,祖父染红(祖父原来肯定是黑色,不然在插入之前,这颗红黑树就违反了性质4),然后祖父节点代替原来的节点进入检查,一直向上升,直到遇到叔叔是黑色或者上升到根节点。

  • 当叔叔是黑色,此时分为插入节点本身是是左孩子还是右孩子,如果是右孩子,一波左旋,变成情况3,当然了此时的父亲孩子角色换了,不过这部重要,重要的是形状。变成情况三一波右旋,把父亲节点顶上去,染成黑色,祖父变成红色。

  • 这里只讨论了插入节点是左孩子的情况,如果是右孩子,对称

  • 下面是代码:

  • template>
    	void RBTree::RBINSERT_Fixup(RB_TreeNode * t)
    	{
    		RB_TreeNode * tmp = t->p;
    		RB_TreeNode * Pbra = _guard;
    		//出递归的条件,就是节点是黑色
    		while (tmp->color==red)
    		{
    			//这个就是我们讨论的当插入节点是左孩子的时候
    			if (tmp == tmp->p->left)
    			{
    				Pbra = tmp->p->right;
    				///第一种情况 叔叔是红色
    				if (Pbra!=_guard&&Pbra->color == red)
    				{
    					tmp->color = black;
    					tmp->p->color = red;
    					Pbra->color = black;
    					t = tmp->p;//当前节点变成祖父节点
    					tmp = t->p;//同时更新父节点为祖父节点的父亲节点
    				}
    				else
    				{
    					///叔叔是黑色
    					if (t == tmp->right)///插入节点是右孩子,左旋,变成第三种情况
    					{
    						Left_Rotate(tmp);
    						tmp = t;//注意这里左旋之后,孩子父亲角色换了
    					}
    					tmp->color = black;//tmp颜色变黑,达到出循环的条件
    					tmp->p->color = red;
    					Right_Rotate(tmp->p);
    				}							
    			}
    			else//这边是插入节点是右孩子的情况,与上面是对称的
    			{
    				Pbra = tmp->p->left;
    				if (Pbra!=_guard&&Pbra->color == red)
    				{
    					tmp->color = black;
    					tmp->p->color = red;
    					Pbra->color = black;
    					t = tmp->p;
    					tmp = t->p;
    				}
    				else
    				{
    					if (t == tmp->left)
    					{
    						Right_Rotate(tmp);
    						tmp = t;
    					}
    					tmp->color = black;
    					tmp->p->color = red;
    					Left_Rotate(tmp->p);
    				}
    			}
    			if (tmp==_guard)//说明当前节点是根节点,因为只有根节点的父节点是边界节点_guard
    			{
    				///这里其实可以直接将t的颜色变成黑色,然后直接出循环
    				tmp = t;
    				tmp->color = black;
    			}
    		}		
    	}

     

  • 下面是删除代码,如果节点有一个孩子是边界节点,那么直接把节点删除,节点的父亲与节点的另一个孩子相连。如果节点的左右孩子都不是边界节点,那么找到它的后继节点,然后交换两个节点的信息,删除后后继节点。其实在交换过程中,最简单的就是交换两者的key,这样节点的结构就没变化,不用更新左右孩子与父亲(这个更新起来巨麻烦六个指针),但是如果这样,指向后继的迭代器就会失效。所以必须交换两块内存。

  • 下面是代码:

  • 	template>
    	void RBTree::RBTree_insert(T value, bool isunique) {
    		RB_TreeNode * Tnode = new RB_TreeNode(value, _guard);
    		RB_TreeNode * tmp = _root;
    		RB_TreeNode * Ptmp = _guard;
    		if (_root == _guard)//如果插入的节点是第一个节点,相当于初始化根节点
    		{
    			_root = Tnode;
    			_root->color = black;
    			_len++;
    			_guard->left = _root;
    			_guard->right = _root;
    			return;
    		}
    
    		//如果插入的节点小于最小值,直接插在最左边,并更新最小值节点
    		if (com(value, _guard->left->key)) {
    			Tnode->p = _guard->left;
    			_guard->left->left = Tnode;
    			_guard->left = Tnode;
    		}
    		//如果插入的节点大于等于最大值,直接插在最右边,更新最大值节点
    		else if (!com(value, _guard->right->key)) {
    			if (!com(_guard->right->key, value) && isunique) {
    				swap(_guard->right->key, tmp->key);
    				delete Tnode;
    				return;
    			}
    			Tnode->p = _guard->right;
    			_guard->right->right = Tnode;
    			_guard->right = Tnode;
    		}
    		else {
    
    			///以上三种情况都不属于寻找合适的插入节点,就一直往下找,直到边界条件(找到了空节点,在我这是_guard)
    			while (tmp != _guard)
    			{
    				Ptmp = tmp;
    				if (com(value, tmp->key))
    					tmp = tmp->left;
    				else if (com(tmp->key, value))
    					tmp = tmp->right;
    				else {
    					if (isunique) {
    						swap(Tnode->key, tmp->key);
    						delete Tnode;
    						return;
    					}
    					tmp = tmp->right;
    				}
    			}
    			///更新插入节点的父亲,以及该父亲的孩子须得指向它
    			Tnode->p = Ptmp;
    			if (com(Tnode->key, Ptmp->key))
    				Ptmp->left = Tnode;
    			else
    				Ptmp->right = Tnode;
    		}
    		///如果插入节点的父亲是红色,则违反了红黑树红黑特性,需要调整
    		if (Tnode->p->color == red)
    			RBINSERT_Fixup(Tnode);
    		_len++;///别忘了更新元素数目
    	}
    
    	/////删除节点
    	template>
    	void RBTree::RBerase(RB_TreeNode* node)
    	{
    		RB_TreeNode* t = node;
    		if (t == _guard) return;
    		RB_TreeNode* tmp;
    		if (t->left != _guard&&t->right != _guard)
    		{
    			///节点左右孩子都不是边界节点,交换信息
    			RB_TreeNode* succ = findSucceed(t);
    			if (t == t->p->left)
    				t->p->left = succ;
    			else
    				t->p->right = succ;
    			if (succ == succ->p->left)
    				succ->p->left = t;
    			else
    				succ->p->right = t;
    			swap(succ->p, t->p);
    			swap(succ->color, t->color);
    			swap(succ->left, t->left);
    			swap(succ->right, t->right);
    			succ->left->p = succ;
    			succ->right->p = succ;
    			if (t->left != _guard)
    				t->left->p = t;
    			if (t->right != _guard)
    				t->right->p = t;
    			if (succ->p == _guard) _root = succ;
    			//这里其实最简单的方法是交换两个key然后直接删除succ,但是这样做会令原来指向succ的迭代器失效,所以要逐个交换。
    		}
    		///这里就是的tmp就是我们需要跟删除节点父亲建立联系的孩子节点
    		if (t->left == _guard)
    			tmp = t->right;
    		else
    			tmp = t->left;
    		///如果删除的是最小值或者最大值,要更新_guard孩子
    		if (t == _guard->left)
    			_guard->left = findSucceed(t);
    		if (t == _guard->right)
    			_guard->right = findFront(t);
    		if (t->p == _guard) _root = tmp;///如果是根,要及时更新根节点
    		else if (t == t->p->left)///tmp 取代原来t的位置
    			t->p->left = tmp;
    		else
    			t->p->right = tmp;
    		tmp->p = t->p;
    		if (t->color == black)///如果被删除的节点是黑色,需要调整红黑树红黑特性
    		{
    			RBDELETE_Fixup(tmp);
    		}
    		_len--;
    		delete t;
    		t = NULL;
    		return;
    	}

    如果被删除节点是黑色,那么这条路径黑高度下降,需要调整颜色,删除情况比插入复杂,我们可以假想成被删除节点的黑色被加在了孩子节点上,这样孩子节点就是两层颜色,多了一层黑色,大概可分为四种情况:

  • 以下所有图均转载自:https://blog.csdn.net/lucienduan/article/details/38880523

  • 第一种情况,兄弟是红色,直接右旋,并将父亲节点染红。这样节点的兄弟就变成黑色了,变成第2,3,4种情况

  •  

  •  

  • 深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第12张图片

  • 第二种情况:兄弟是黑,且兄弟的左右孩子都是黑色,这种情况吧兄弟染红,上推至父亲节点,node节点本来多的那一层黑色被移到父亲节点身上了,现在父亲节点身上有两层黑色,继续进入循环

深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第13张图片

第三种情况是兄弟黑,且兄弟的左孩子红色,右孩子黑色,此时我们将兄弟节点跟左孩子节点颜色交换,并将兄弟右旋,此时变成了情况4,当然别忘了,此时的兄弟与孩子的父亲儿子身份交换了,现在的兄弟是与原来兄弟的右孩子,此时兄弟右孩子是红色

深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第14张图片

第四种情况兄弟右孩子为红色,将父亲节点左旋,并把将兄弟的黑色传给右孩子,将父亲节点的颜色传给兄弟,然后将node的额外黑色给父亲。这样NODE去掉了额外的黑色,且保持了黑高度。

深入红黑树插入删除,并写出一个自己的“set”(速度比STL快很多 )_第15张图片

代码如下:

	///删除节点后调整红黑树满足红黑树五个特性
	template>
	void RBTree::RBDELETE_Fixup(RB_TreeNode * t)
	{
		RB_TreeNode * w = NULL;
		while (t!=_root&&t->color==black)
		{
			////要连接的孩子节点是左孩子的情况
			if (t == t->p->left)
			{
				w = t->p->right;//兄弟节点
				////第一种情况
				if (w->color == red)///兄弟是红色
				{
					///交换兄弟与父亲的颜色,因为兄弟颜色是红色,父亲肯定是黑色,所以直接赋值
					t->p->color = red;
					w->color = black;
					Left_Rotate(t->p);
				}
				else
				{
					///兄弟右孩子是红色,就是第四种情况
					if (w->right->color == red)
					{
						w->color = t->p->color;
						t->p->color = black;
						w->right->color = black;
						Left_Rotate(t->p);
						t = _root;///这里是为了最后一句,出循环后要把t染成黑色,将t设置为根节点,可以出循环,将根节点染黑没影响
					}
					else if (w->left->color == red)///右孩子是黑色,左孩子红色
					{
						w->color = red;
						w->left->color = black;
						Right_Rotate(w);
						w = w->p;//别忘了右旋之后更新兄弟
					}
					else
					{
						///两个孩子都是黑色,也就是第二种情况,把兄弟染红,将另一重黑色往上推,也就是父亲节点
						w->color = red;
						t = t->p;
					}

				}
			}
			///这边是当前节点是右孩子的情况 完全对称
			else
			{
				w = t->p->left;
				if (w->color == red)
				{
					t->p->color = red;
					w->color = black;
					Right_Rotate(t->p);
				}
				else
				{
					if (w->left != _guard&&w->left->color == red)
					{
						w->color = t->p->color;
						t->p->color = black;
						w->left->color = black;
						Right_Rotate(t->p);
						t = _root;
					}
					else if (w->right != _guard&&w->right->color == red)
					{
						w->color = red;
						w->right->color = black;
						Left_Rotate(w);
						w = w->p;
					}
					else
					{
						w->color = red;
						t = t->p;
					}
				}
			}
		}
		t->color = black;///出循环要么是t是红色,要么t是根节点,直接染黑。
	}

下面是完整代码,有兴趣可以回去用用试试看(哈哈哈)

#pragma once
#include
#include
#include
#include
#include
#include
using namespace std;
enum color
{
	red,
	black
};
template
struct RB_TreeNode 
{
	RB_TreeNode * left;
	RB_TreeNode * right;
	RB_TreeNode * p;
	T key;
	color color;
	RB_TreeNode (T x,RB_TreeNode* _Guard) :key(x), left(_Guard), right(_Guard), p(_Guard), color(red) {};
	RB_TreeNode () : key(T()),left(NULL), right(NULL), p(NULL), color(black) {};
	RB_TreeNode(T val) :key(val),left(NULL), right(NULL), p(NULL), color(black) {};
	void operator=(RB_TreeNode& oth) {
		left = oth.left;
		color = oth.color;
		right = oth.right;
		key = oth.key;
		p = oth.p;
	}

	//寻找前驱
	RB_TreeNode* findFront(RB_TreeNode* _Guard)
	{
		RB_TreeNode* t = this;
		if (t == _Guard) return t;
		if (t->left != _Guard)
		{
			 t = t->left;
			while (t->right != _Guard)
				t = t->right;
			return t;
		}
		else
		{
			while (t->p != _Guard&&t == t->p->left)
				t = t->p;
			return t->p;
		}
	}

	//寻找后继
	RB_TreeNode* findSucceed(RB_TreeNode* _Guard)
	{
		RB_TreeNode* t = this;
		if (t == _Guard) return t;
		if (t->right != _Guard)
		{
			t = t->right;
			while (t->left != _Guard)
				t = t->left;
			return t;
		}
		else
		{
			while (t->p != _Guard&&t == t->p->right)
				t = t->p;
			return t->p;
		}
	}
};
// :public iterator
template
struct rbtree_iterator {
	typedef rbtree_iterator iterator;
	typedef RB_TreeNode* link_type;
	typedef rbtree_iterator self;
	typedef bidirectional_iterator_tag iterator_category;
	typedef value value_type;
	typedef ptr pointer;
	typedef ref reference;
	typedef ptrdiff_t difference_type;
	link_type node;
	link_type _Guard;

	rbtree_iterator() {};
	rbtree_iterator(const link_type& x,const link_type& g):node(x),_Guard(g) {};
	rbtree_iterator(const iterator& it) :node(it.node), _Guard(it._Guard) {};
	
	
	self& operator=(const self& oth) { node = oth.node; return *this; };
	ref operator*() const { if (node == _Guard) { cout << "尝试访问边界迭代器" << endl; throw; } return node->key; };
	ptr operator->() const { if (node == _Guard) { cout << "尝试访问边界迭代器" << endl; throw; }return &(node->key); };
	self& operator++() { if (node == _Guard) { cout << "迭代器向后越界" << endl; throw; } node = node->findSucceed(_Guard); return *this; };
	self operator++(int) { if (node == _Guard) { cout << "迭代器向后越界" << endl; throw; } self tmp = *this; node = node->findSucceed(_Guard); return tmp; };
	self& operator--() { if (node == _Guard) { cout << "迭代器向前越界" << endl; throw; } node = node->findFront(_Guard); return *this; };
	self operator--(int) { if (node == _Guard) { cout << "迭代器向前越界" << endl; throw; }  self tmp = *this; node = node->findFront(_Guard); return tmp; };
	bool operator==(const self& oth) { return node == oth.node; };
	bool operator!=(const self& oth) { return !(node == oth.node); };

};


template
class mycom {
public:
	bool operator() (const T& left, const T& right) {
		return left < right;
	}
};
template>
class RBTree {
public:
	typedef rbtree_iterator iterator;
	typedef rbtree_iterator const_iterator;

	RBTree(const keycompare& comp = keycompare());//默认构造函数
	RBTree(const RBTree& oth);
	RBTree(RBTree&& oth);//移动构造函数
    template
	RBTree(_itr begin, _itr end);//如果传入的是迭代器
	
	
	virtual~RBTree();

	///操作符重载
	RBTree& operator=(const RBTree& oth);
	RBTree& operator=(RBTree&& oth);
	const_iterator operator[](int i);

    


	void clear();//清空树
	int size();//返回树的数量
	bool empty();//判空
	int count(T val);//与val相等的元素的数量
	
	void insert(T value);//插入元素,可重复
	void insert_unique(T value);//插入元素,如果重复,后来的会代替现在的。
	

	//想怎么删除,就怎么删除
	void erase_unique(T value);//删除一个等于value的元素
	void erase_equal(T value); //删除所有等于value的元素
	void erase(const_iterator& l, const_iterator& r);//删除迭代器区间的元素
	void erase(const_iterator& start, int n);//删除从指定迭代器开始的n个元素
	void erase(const_iterator& it);//删除迭代器指向的元素

	////你要的迭代器  我都有	
	const_iterator begin();//返回最小元素的迭代器
	const_iterator end();  //返回一个边界,跟STL其他容器的end()差不多
	const_iterator back(); //返回最大元素的迭代器
	const_iterator start(); //返回一个边界,只不过是前边界,实际与end()地址相同,为了区别写了这么个函数
	const_iterator find(T val);//寻找指定元素第一次出现,返回一个迭代器;
	const_iterator findlast(T val);//寻找指定元素最后一次出现,返回一个迭代器;

	const_iterator lower_bound(T val);//如果元素存在,返回它第一次出现时的迭代器,若不存在返回它下边界迭代器
	const_iterator upper_bound(T val);//元素存在,返回最后一次出现迭代器,不存在,返回上边界迭代器

    //测试用的函数
	void pre_traverse();
	void mid_traverse(T* pt = NULL);
	void post_traverse();
	void print();
	RB_TreeNode* guard();
	RB_TreeNode * getroot();


private:
	void RBerase(RB_TreeNode* node);//删除函数
	RB_TreeNode*  RBTree_serch(T value, RB_TreeNode* beginRoot);//寻找函数
	void RBTree_insert(T value, bool isunique);//插入函数
	void Left_Rotate(RB_TreeNode * t);//左旋
	void Right_Rotate(RB_TreeNode * t);//右旋
	void RBDELETE_Fixup(RB_TreeNode * t);//删除后调整红黑特性
	void RBINSERT_Fixup(RB_TreeNode * t);//插入后调整红黑特性
	RB_TreeNode* findFront(RB_TreeNode* t);//寻找前驱
	RB_TreeNode* findSucceed(RB_TreeNode * t);//寻找后继
	const_iterator findFandB(RB_TreeNode* target, bool isForward);//寻找与指定值相等的最前面元素与最后面元素

	RB_TreeNode * copyTree(const RB_TreeNode* oth, RB_TreeNode* p,  RB_TreeNode*const& Guard);//拷贝
	void distroy(RB_TreeNode* root);//销毁
	int findindex(RB_TreeNode* root, int num, RB_TreeNode*& tar, int& index);
	void relationGuard();
	
	void printNode(RB_TreeNode * outT);
	RB_TreeNode* _guard;
	RB_TreeNode* _root;
	int _len;
	keycompare com;
	friend ostream& operator<<(ostream &out, RB_TreeNode * outT);
};
  
     ////析构函数与构造函数
    template>	
    RBTree::RBTree(const keycompare& comp=keycompare()):_len(0),com(comp), _guard(new RB_TreeNode())
		 {
		_guard->left = _guard; 
		_guard->right = _guard;
		_root = _guard;
	}

	template>
	RBTree::RBTree(const RBTree& oth):_guard(new RB_TreeNode(0)),_len(oth._len){
		_root = copyTree(oth._root, _guard,oth._guard);
		relationGuard();
	}
	//移动构造函数
	template>
	RBTree::RBTree(RBTree&& oth):_len(oth._len), _guard(oth._guard), _root(oth._root) {
		oth._root = NULL;
		oth._guard = NULL;
	}

	template>
	template
	RBTree::RBTree(_itr begin,_itr end):_len(0), com(keycompare()), _guard(new RB_TreeNode()), _root(_guard) {
		while (begin != end)
			insert(*(begin++));
	}

	template>
	RBTree::~RBTree()
	{
		clear();
	}


	////操作符重载
	template>
	RBTree& RBTree::operator=(const RBTree& oth) {
		clear();//在拷贝之前,先要释放已有资源
		_root = copyTree(oth._root, _guard);
		return *this;
	}

	//当参数为右值引用
	template>
	RBTree& RBTree::operator=(RBTree&& oth) {
		clear();//在指向传进来的节点之前,要先释放原来的资源;
		_root = oth.root;
		return *this;
	}

	template>
	rbtree_iterator RBTree::operator[] (int i) {
		if (i<0||i >= _len) {
			cout << "访问越界" << endl;
			throw;
		}
		RB_TreeNode* tar = NULL;
		findindex(_root, 0, tar, ++i);
		return const_iterator(tar, _guard);
	}


	//判空,size,清除
	template>
	void RBTree::clear() {
		if (_root == NULL)
		{
			_len = 0;
			return;
		}
		distroy(_root);
		_root = NULL;
		_len = 0;
	}

	template>
	int RBTree::size()
	{
		return _len;
	}

	template>
	bool  RBTree::empty() {
		return _len == 0;
	}

	template>
	int RBTree::count(T val) {
		RB_TreeNode* pval = RBTree_serch(val,_root);
		if (pval == _guard) return 0;
		int num=1;
		RB_TreeNode* temp = pval->findFront(_guard);
		while (temp!=_guard&&!com(temp->key, val) && !com(val, temp->key)) {
			temp = temp->findFront(_guard);
			++num;
		}
		temp = pval->findSucceed(_guard);
		while (temp != _guard && !com(temp->key, val) && !com(val, temp->key)) {
			temp = temp->findSucceed(_guard);
			++num;
		}
		return num;
	}


	////各种插入与删除操作
	template>
	void RBTree::insert(T value)
	{
		RBTree_insert(value, false);
	}

	template>
	void RBTree::insert_unique(T value) {
		RBTree_insert(value, true);
	}

	template>
	void RBTree::erase_unique(T value) {
		RBerase(RBTree_serch(value, _root));
	}

	template>
	void RBTree::erase_equal(T value) {
		RB_TreeNode* tar = RBTree_serch(value, _root);
		if (tar == _guard) return;
		erase(findFandB(tar, true), ++findFandB(tar, false));
	}

	template>
	void RBTree::erase(const_iterator& l, const_iterator& r) {
		while (l != r&&l != end())
			erase(l++);
	}

	template>
	void RBTree::erase(const_iterator& start, int n) {
		while (n--&&start != end()) erase(start++);
	}

	template>
	void RBTree::erase(const_iterator& it) {
		RBerase(it.node);
	}


	///必要的迭代器
	template>
	rbtree_iterator RBTree::begin() {
		return const_iterator(_guard->left, _guard);
	}

	template>
	rbtree_iterator RBTree::end() {
		return const_iterator(_guard, _guard);
	}

	template>
	rbtree_iterator RBTree::back() {
		return const_iterator(_guard->right, _guard);
	}

	template>
	rbtree_iterator RBTree::start() {
		return end();
	}

	template>
	rbtree_iterator RBTree::find(T val) {
		RB_TreeNode* p = RBTree_serch(val, _root);
		if (p == _guard) return end();
		return findFandB(p, true);
	}

	template>
	rbtree_iterator RBTree::findlast(T val) {
		RB_TreeNode* p = RBTree_serch(val, _root);
		if (p == _guard) return end();
		return findFandB(p, false);
	}

	template>
	rbtree_iterator RBTree::lower_bound(T val) {
		if (_len == 0) return end();
		RB_TreeNode* root = _root;
		RB_TreeNode* tmp = NULL;
		while (root != _guard) {
			tmp = root;
			if (com(val, root->key))
				root = root->left;
			else if (com(root->key, val))
				root = root->right;
			else {
				tmp = root;
				break;
			}
		}
		if (root == _guard) {
			if (com(tmp->key, val))
				return const_iterator(findSucceed(tmp), _guard);
			else
				return const_iterator(tmp, _guard);
		}
		/*if (root == _guard) {
		if (com(val, tmp->key))
		return const_iterator(findFront(tmp), _guard);
		else
		return const_iterator(tmp, _guard);
		}*/
		return findFandB(tmp, true);
	}

	template>
	rbtree_iterator RBTree::upper_bound(T val) {
		RB_TreeNode* root = _root;
		RB_TreeNode* tmp = NULL;
		while (root != _guard) {
			tmp = root;
			if (com(val, root->key))
				root = root->left;
			else if (com(root->key, val))
				root = root->right;
			else {
				tmp = root;
				break;
			}
		}
		if (root == _guard) {
			if (com(tmp->key, val))
				return const_iterator(findSucceed(tmp), _guard);
			else
				return const_iterator(tmp, _guard);
		}
		return findFandB(tmp, false);
	}




	////后面都是为了实现前面的接口的内部函数

	template>
	RB_TreeNode* RBTree::guard() {
		return _guard;
	}

	template>
	RB_TreeNode * RBTree::getroot()
	{
		return _root;
	}

    ///插入节点后调整红黑树满足红黑树五个特性

	//////左旋
	template>
	void RBTree::Left_Rotate(RB_TreeNode * t)
	{
		if (t == _guard || t->right == _guard)
		{
			cout << "左旋节点或节点右孩子不应为空" << endl;
			return;
		}
		RB_TreeNode * tmp = t->right;
		tmp->p = t->p;
		if (t->p == _guard)
		{
			_root = tmp;
		}
		else if (t == t->p->left)
			t->p->left = tmp;
		else
			t->p->right = tmp;
		t->p = tmp;
		t->right = tmp->left;
		if (tmp->left != _guard)
			tmp->left->p = t;
		tmp->left = t;
	}

	////右旋
	template>
	void RBTree::Right_Rotate(RB_TreeNode * t)
	{
		if (!t || !t->left)
		{
			cout << "右旋节点或节点左孩子不应为空" << endl;
			return;
		}
		RB_TreeNode * tmp = t->left;
		tmp->p = t->p;
		if (t->p == _guard)
		{
			_root = tmp;
		}
		else if (t == t->p->left)
			t->p->left = tmp;
		else
			t->p->right = tmp;
		t->p = tmp;
		t->left = tmp->right;
		if (tmp->right != _guard)
			tmp->right->p = t;
		tmp->right = t;
	}

	template>
	void RBTree::RBTree_insert(T value, bool isunique) {
		RB_TreeNode * Tnode = new RB_TreeNode(value, _guard);
		RB_TreeNode * tmp = _root;
		RB_TreeNode * Ptmp = _guard;
		if (_root == _guard)//如果插入的节点是第一个节点,相当于初始化根节点
		{
			_root = Tnode;
			_root->color = black;
			_len++;
			_guard->left = _root;
			_guard->right = _root;
			return;
		}

		//如果插入的节点小于最小值,直接插在最左边,并更新最小值节点
		if (com(value, _guard->left->key)) {
			Tnode->p = _guard->left;
			_guard->left->left = Tnode;
			_guard->left = Tnode;
		}
		//如果插入的节点大于等于最大值,直接插在最右边,更新最大值节点
		else if (!com(value, _guard->right->key)) {
			if (!com(_guard->right->key, value) && isunique) {
				swap(_guard->right->key, tmp->key);
				delete Tnode;
				return;
			}
			Tnode->p = _guard->right;
			_guard->right->right = Tnode;
			_guard->right = Tnode;
		}
		else {

			///以上三种情况都不属于寻找合适的插入节点,就一直往下找,直到边界条件(找到了空节点,在我这是_guard)
			while (tmp != _guard)
			{
				Ptmp = tmp;
				if (com(value, tmp->key))
					tmp = tmp->left;
				else if (com(tmp->key, value))
					tmp = tmp->right;
				else {
					if (isunique) {
						swap(Tnode->key, tmp->key);
						delete Tnode;
						return;
					}
					tmp = tmp->right;
				}
			}
			///更新插入节点的父亲,以及该父亲的孩子须得指向它
			Tnode->p = Ptmp;
			if (com(Tnode->key, Ptmp->key))
				Ptmp->left = Tnode;
			else
				Ptmp->right = Tnode;
		}
		///如果插入节点的父亲是红色,则违反了红黑树红黑特性,需要调整
		if (Tnode->p->color == red)
			RBINSERT_Fixup(Tnode);
		_len++;///别忘了更新元素数目
	}

	/////删除节点
	template>
	void RBTree::RBerase(RB_TreeNode* node)
	{
		RB_TreeNode* t = node;
		if (t == _guard) return;
		RB_TreeNode* tmp;
		if (t->left != _guard&&t->right != _guard)
		{
			///节点左右孩子都不是边界节点,交换信息
			RB_TreeNode* succ = findSucceed(t);
			if (t == t->p->left)
				t->p->left = succ;
			else
				t->p->right = succ;
			if (succ == succ->p->left)
				succ->p->left = t;
			else
				succ->p->right = t;
			swap(succ->p, t->p);
			swap(succ->color, t->color);
			swap(succ->left, t->left);
			swap(succ->right, t->right);
			succ->left->p = succ;
			succ->right->p = succ;
			if (t->left != _guard)
				t->left->p = t;
			if (t->right != _guard)
				t->right->p = t;
			if (succ->p == _guard) _root = succ;
			//这里其实最简单的方法是交换两个key然后直接删除succ,但是这样做会令原来指向succ的迭代器失效,所以要逐个交换。
		}
		///这里就是的tmp就是我们需要跟删除节点父亲建立联系的孩子节点
		if (t->left == _guard)
			tmp = t->right;
		else
			tmp = t->left;
		///如果删除的是最小值或者最大值,要更新_guard孩子
		if (t == _guard->left)
			_guard->left = findSucceed(t);
		if (t == _guard->right)
			_guard->right = findFront(t);
		if (t->p == _guard) _root = tmp;///如果是根,要及时更新根节点
		else if (t == t->p->left)///tmp 取代原来t的位置
			t->p->left = tmp;
		else
			t->p->right = tmp;
		tmp->p = t->p;
		if (t->color == black)///如果被删除的节点是黑色,需要调整红黑树红黑特性
		{
			RBDELETE_Fixup(tmp);
		}
		_len--;
		delete t;
		t = NULL;
		return;
	}

	template>
	void RBTree::RBINSERT_Fixup(RB_TreeNode * t)
	{
		RB_TreeNode * tmp = t->p;
		RB_TreeNode * Pbra = _guard;
		//出递归的条件,就是节点是黑色
		while (tmp->color==red)
		{
			//这个就是我们讨论的当插入节点是左孩子的时候
			if (tmp == tmp->p->left)
			{
				Pbra = tmp->p->right;
				///第一种情况 叔叔是红色
				if (Pbra!=_guard&&Pbra->color == red)
				{
					tmp->color = black;
					tmp->p->color = red;
					Pbra->color = black;
					t = tmp->p;//当前节点变成祖父节点
					tmp = t->p;//同时更新父节点为祖父节点的父亲节点
				}
				else
				{
					///叔叔是黑色
					if (t == tmp->right)///插入节点是右孩子,左旋,变成第三种情况
					{
						Left_Rotate(tmp);
						tmp = t;//注意这里左旋之后,孩子父亲角色换了
					}
					tmp->color = black;//tmp颜色变黑,达到出循环的条件
					tmp->p->color = red;
					Right_Rotate(tmp->p);
				}							
			}
			else//这边是插入节点是右孩子的情况,与上面是对称的
			{
				Pbra = tmp->p->left;
				if (Pbra!=_guard&&Pbra->color == red)
				{
					tmp->color = black;
					tmp->p->color = red;
					Pbra->color = black;
					t = tmp->p;
					tmp = t->p;
				}
				else
				{
					if (t == tmp->left)
					{
						Right_Rotate(tmp);
						tmp = t;
					}
					tmp->color = black;
					tmp->p->color = red;
					Left_Rotate(tmp->p);
				}
			}
			if (tmp==_guard)//说明当前节点是根节点,因为只有根节点的父节点是边界节点_guard
			{
				///这里其实可以直接将t的颜色变成黑色,然后直接出循环
				tmp = t;
				tmp->color = black;
			}
		}		
	}

	///删除节点后调整红黑树满足红黑树五个特性
	template>
	void RBTree::RBDELETE_Fixup(RB_TreeNode * t)
	{
		RB_TreeNode * w = NULL;
		while (t!=_root&&t->color==black)
		{
			////要连接的孩子节点是左孩子的情况
			if (t == t->p->left)
			{
				w = t->p->right;//兄弟节点
				////第一种情况
				if (w->color == red)///兄弟是红色
				{
					///交换兄弟与父亲的颜色,因为兄弟颜色是红色,父亲肯定是黑色,所以直接赋值
					t->p->color = red;
					w->color = black;
					Left_Rotate(t->p);
				}
				else
				{
					///兄弟右孩子是红色,就是第四种情况
					if (w->right->color == red)
					{
						w->color = t->p->color;
						t->p->color = black;
						w->right->color = black;
						Left_Rotate(t->p);
						t = _root;///这里是为了最后一句,出循环后要把t染成黑色,将t设置为根节点,可以出循环,将根节点染黑没影响
					}
					else if (w->left->color == red)///右孩子是黑色,左孩子红色
					{
						w->color = red;
						w->left->color = black;
						Right_Rotate(w);
						w = w->p;//别忘了右旋之后更新兄弟
					}
					else
					{
						///两个孩子都是黑色,也就是第二种情况,把兄弟染红,将另一重黑色往上推,也就是父亲节点
						w->color = red;
						t = t->p;
					}

				}
			}
			///这边是当前节点是右孩子的情况 完全对称
			else
			{
				w = t->p->left;
				if (w->color == red)
				{
					t->p->color = red;
					w->color = black;
					Right_Rotate(t->p);
				}
				else
				{
					if (w->left != _guard&&w->left->color == red)
					{
						w->color = t->p->color;
						t->p->color = black;
						w->left->color = black;
						Right_Rotate(t->p);
						t = _root;
					}
					else if (w->right != _guard&&w->right->color == red)
					{
						w->color = red;
						w->right->color = black;
						Left_Rotate(w);
						w = w->p;
					}
					else
					{
						w->color = red;
						t = t->p;
					}
				}
			}
		}
		t->color = black;///出循环要么是t是红色,要么t是根节点,直接染黑。
	}
	
    /////以beginRoot为根的子树开始寻找节点
	template>
	RB_TreeNode*  RBTree::RBTree_serch(T value, RB_TreeNode* beginRoot)
	{
		RB_TreeNode * p = beginRoot;
		while (p != _guard)
		{
			if (com(p->key, value))
				p = p->right;
			else if (com(value, p->key))
				p = p->left;
			else
				return p;
		}
		return p;
	}

	///////寻找前驱
	template>
	RB_TreeNode* RBTree::findFront(RB_TreeNode* t)
	{
		return t->findFront(_guard);
	}

	/////寻找后继
	template>
	RB_TreeNode* RBTree::findSucceed(RB_TreeNode * t)
	{
		return t->findSucceed(_guard);
	}


	template>
	RB_TreeNode * RBTree::copyTree(const RB_TreeNode* oth, RB_TreeNode* p, RB_TreeNode* const& Guard) {
		if (oth == Guard) return _guard;
		RB_TreeNode* root = new RB_TreeNode(oth->key);
		root->color = oth->color;
		root->p = p;
		root->left = copyTree(oth->left, root, Guard);
		root->right = copyTree(oth->right, root, Guard);
		return root;
	}

	template>
	void RBTree::distroy(RB_TreeNode* root) {
		if (root == _guard) return;
		distroy(root->left);
		distroy(root->right);
		delete root;
	}

	template>
	int RBTree::findindex(RB_TreeNode* root, int num, RB_TreeNode*& tar, int& index) {
		if (tar != NULL || root == _guard) return 0;
		int l = findindex(root->left, 0, tar, index);
		if (l + 1 + num == index) {
			tar = root;
			return 0;
		}
		int r = findindex(root->right, l + 1+num, tar, index);
		return l + r + 1;
	}

	template>
	rbtree_iterator  RBTree::findFandB(RB_TreeNode* target, bool isForward) {
		if (isForward) {
			RB_TreeNode* succ = findFront(target);
			while (succ != _guard && !com(target->key, succ->key) && !com(succ->key, target->key)) {
				target = succ;
				succ = findFront(succ);
			}
			return const_iterator(target, _guard);
		}
		else {
			RB_TreeNode* succ = findSucceed(target);
			while (succ != _guard && !com(target->key, succ->key) && !com(succ->key, target->key)) {
				target = succ;
				succ = findSucceed(succ);
			}
			return const_iterator(target, _guard);
		}
		return const_iterator(_guard, _guard);
	}


	template>
	void  RBTree::relationGuard() {
		RB_TreeNode* node = _root;
		while (node->left != _guard)
			node = node->left;
		_guard->left = node;
		node = _root;
		while (node->right != _guard)
			node = node->right;
		_guard->right = node;
	}



	////自己测试用的函数
	/////前序遍历
	template>
	void RBTree::pre_traverse()
	{

	}

	////中序遍历
	template>
	void RBTree::mid_traverse(T* pt=NULL)
	{
		RB_TreeNode * p = _root;
		stack *> s;
		while (true)
		{
			while (p!=_guard)
			{
				s.push(p);
				p = p->left;
			}

			if (s.empty()) break;
			p = s.top();
			if (pt == NULL)
				cout << p->key << " ";
			else
				*(pt++) = p->key;
			s.pop();
			p = p->right;
		}
		cout << endl;
	}

	/////后序遍历
	template>
	void RBTree::post_traverse() {

	}

	/////层次遍历
	template>
	void RBTree::print() {
		RB_TreeNode * pRoot = _root;
		if (!pRoot) return;
		vector *> > vq(2);
		int index = 0;
		vq[index].push(pRoot);
		while (!vq[index].empty() || !vq[1 - index].empty())
		{
			while (!vq[index].empty())
			{
				RB_TreeNode * p = vq[index].front();
				vq[index].pop();
				printNode(p);
				if (p->left != _guard)
					vq[1 - index].push(p->left);
				if (p->right != _guard)
					vq[1 - index].push(p->right);
			}
			cout << endl;
			index = 1 - index;
		}
	}

	template>
	void RBTree::printNode(RB_TreeNode * outT) {
		if (outT == _guard) return ;
		cout << "[" << " " << "key:" << outT->key << " ";
		if (outT->color == 0)
			cout << "color:" << "red" << " ";
		else
			cout << "color:" << "black" << " ";
		if (outT->left != _guard)
			cout << "left:" << outT->left->key << " ";
		if (outT->right != _guard)
			cout << "right:" << outT->right->key << " ";
		if (outT->p != _guard)
			cout << "parent:" << outT->p->key << " ";
		cout << "]";
	}


template
ostream& operator<<(ostream &out, RB_TreeNode * outT)
{

	return out;
}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(C++,红黑树,数据结构)