- DeepSeek:智能搜索与分析的新纪元
XRC2231
学习
在人工智能浪潮席卷全球的今天,DeepSeek如同一颗璀璨的新星,以其独特的魅力和强大的功能,在AI领域脱颖而出。DeepSeek,这一基于深度学习和数据挖掘技术的智能搜索与分析系统,不仅重新定义了搜索引擎的边界,更以其卓越的性能和广泛的应用场景,为全球用户带来了前所未有的智能体验。本文将从DeepSeek的定义、特点、应用场景、优势等方面进行全面而深入的介绍,带您领略这一新兴技术的独特魅力。一、
- 机器学习knnlearn1
XW-ABAP
机器学习机器学习人工智能
importmatplotlib.pyplotaspltimportnumpyasnpimportoperator#定义一个函数用于创建数据集defcreateDataSet():#定义特征矩阵,每个元素是一个二维坐标点,代表不同策略数据点的坐标group=np.array([[20,3],[15,5],[18,1],[5,17],[2,15],[3,20]])#定义每个数据点对应的标签,用于区分
- 基于 MySQL 和 Spring Boot 的在线论坛管理系统设计与实现
城南|阿洋-计算机从小白到大神
mysqlspringboot数据库
markdownCopy✌全网粉丝20W+,csdn特邀作者、博客专家、CSDN[新星计划]导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、pyhton、机器学习技术领域和毕业项目实战✌哈喽兄弟们,好久不见哦~最近整理了一下之前写过的一些小项目/毕业设计。发现还是有很多存货的,想一想既然放在电脑里面也吃灰,那么还不如分享出去,没准还可以帮助到
- 零基础入门机器学习:用Scikit-learn实现鸢尾花分类
藍海琴泉
机器学习scikit-learn分类
适合人群:机器学习新手|数据分析爱好者|需快速展示案例的学生一、引言:为什么要学这个案例?目的:明确机器学习解决什么问题,建立学习信心。机器学习定义:让计算机从数据中自动学习规律(如分类鸢尾花品种)。为什么选鸢尾花数据集:数据量小、特征明确,适合教学演示。Scikit-learn优势:提供现成算法和工具,无需从头写数学公式。二、环境准备:5分钟快速上手目的:搭建可运行的代码环境,避免卡在工具安装环
- 机器学习--DBSCAN聚类算法详解
2201_75491841
机器学习算法聚类人工智能
目录引言1.什么是DBSCAN聚类?2.DBSCAN聚类算法的原理3.DBSCAN算法的核心概念3.1邻域(Neighborhood)3.2核心点(CorePoint)3.3直接密度可达(DirectlyDensity-Reachable)3.4密度可达(Density-Reachable)3.5密度相连(Density-Connected)4.DBSCAN算法的步骤5.DBSCAN算法的优缺点5
- 【机器学习】机器学习工程实战-第3章 数据收集和准备
腊肉芥末果
机器学习工程实战机器学习人工智能
上一章:第2章项目开始前文章目录3.1关于数据的问题3.1.1数据是否可获得3.1.2数据是否相当大3.1.3数据是否可用3.1.4数据是否可理解3.1.5数据是否可靠3.2数据的常见问题3.2.1高成本3.2.2质量差3.2.3噪声(noise)3.2.4偏差(bias)3.2.5预测能力低(lowpredictivepower)3.2.6过时的样本3.2.7离群值3.2.8数据泄露/目标泄漏3
- 机器学习实战 第一章 机器学习基础
LuoY、
MachineLearning机器学习算法人工智能
第一章机器学习1.1何谓机器学习1.2关键术语1.3机器学习的主要任务1.4如何选择合适的算法1.5开发机器学习应用程序的步骤1.6Python语言的优势1.1何谓机器学习 1、简单地说,机器学习就是把无序的数据转换成有用的信息; 2、机器学习能让我们自数据集中受启发,我们会利用计算机来彰显数据背后的真实含义; 3、机器学习横跨计算机科学、工程技术和统计学等多个学科,需要多学科的
- 数据挖掘实战-基于机器学习的垃圾邮件检测模型
艾派森
数据挖掘实战合集数据挖掘机器学习人工智能python
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍
- 集成学习(随机森林)
herry57
数学建模大数据随机森林集成学习
目录一、集成学习概念二、Bagging集成原理三、随机森林四、例子(商品分类)一、集成学习概念集成学习通过建⽴⼏个模型来解决单⼀预测问题。它的⼯作原理是⽣成多个分类器/模型,各⾃独⽴地学习和作出预测。这些预测最后结合成组合预测,因此优于任何⼀个单分类的做出预测。只要单分类器的表现不太差,集成学习的结果总是要好于单分类器的二、Bagging集成原理分类圆形和长方形三、随机森林在机器学习中,随机森林是
- Linux部署模型报错OSError: Error no file named pytorch_model.bin, tf_model.h5, model.ckpt.index or flax_mod
dkgee
linuxpytorch运维
报错内容:OSError:Errornofilenamedpytorch_model.bin,tf_model.h5,model.ckpt.indexorflax_model.msgpackfoundindirectory主要原因是transformer版本不对,需要升级pipinstall--upgradehuggingface_hubpipinstalltransformers[torch]其
- 【机器学习】朴素贝叶斯入门:从零到垃圾邮件过滤实战
吴师兄大模型
0基础实现机器学习入门到精通机器学习人工智能朴素贝叶斯深度学习pytorchsklearn开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【机器学习】机器学习工程实战-第2章 项目开始前
腊肉芥末果
机器学习工程实战机器学习人工智能
上一章:第1章概述文章目录2.1机器学习项目的优先级排序2.1.1机器学习的影响2.1.2机器学习的成本2.2估计机器学习项目的复杂度2.2.1未知因素2.2.2简化问题2.2.3非线性进展2.3确定机器学习项目的目标2.3.1模型能做什么2.3.2成功模型的属性2.4构建机器学习团队2.4.1两种文化2.4.2机器学习团队的成员2.5机器学习项目为何失败2.5.1缺乏有经验的人才2.5.2缺乏领
- 机器学习怎么做特征工程
全栈你个大西瓜
人工智能机器学习人工智能特征工程数据预处理特征变换特征降维特征构造
一、特征工程通俗解释特征工程就像厨师做菜前的食材处理:原始数据是“生肉和蔬菜”,特征工程是“切块、腌制、调料搭配”,目的是让机器学习模型(食客)更容易消化吸收,做出更好预测(品尝美味)。二、为什么要做特征工程?数据质量差:原始数据常有缺失、噪声、不一致问题(如年龄列混入“未知”)。模型限制:算法无法直接理解原始数据(如文本、日期需要数值化)。提升效果:好特征能显著提升模型性能(准确率提升10%~5
- 【机器学习】机器学习四大分类
藓类少女
机器学习机器学习分类人工智能
机器学习的方法主要可以分为四大类,根据学习方式和数据标注情况进行分类:1.监督学习(SupervisedLearning)特点:有标注数据(即训练数据有明确的输入(X)和输出(Y))。学习目标是找到一个映射(f(X)\approxY)。适用于分类和回归问题。主要算法:分类(Classification):逻辑回归(LogisticRegression)支持向量机(SVM)朴素贝叶斯(NaïveBa
- 机器学习——KNN超参数
练习AI两年半
机器学习人工智能深度学习
sklearn.model_selection.GridSearchCV是scikit-learn中用于超参数调优的核心工具,通过结合交叉验证和网格搜索实现模型参数的自动化优化。以下是详细介绍:一、功能概述GridSearchCV在指定参数网格上穷举所有可能的超参数组合,通过交叉验证评估每组参数的性能,最终选择最优参数组合。其核心价值在于:自动化调参:替代手动参数调试,提升效率3。交叉验证支持:通
- AI模型技术演进与行业应用图谱
智能计算研究中心
其他
内容概要当前AI模型技术正经历从基础架构到行业落地的系统性革新。主流深度学习框架如TensorFlow和PyTorch持续优化动态计算图与分布式训练能力,而MXNet凭借高效的异构计算支持在边缘场景崭露头角。与此同时,模型压缩技术通过量化和知识蒸馏将参数量降低60%-80%,联邦学习则通过加密梯度交换实现多机构数据协同训练。在应用层面,医疗诊断模型通过迁移学习在CT影像分类任务中达到98.2%的准
- 模型优化驱动产业应用创新
智能计算研究中心
其他
内容概要当前模型优化技术的迭代正沿着多维路径快速演进,其核心驱动力在于突破算法性能与产业需求间的适配瓶颈。以自适应学习机制与迁移学习框架为基础的优化策略,显著提升了模型在跨场景应用中的泛化能力,而超参数自动调优技术则通过PyTorch、TensorFlow等主流框架的接口标准化,降低了复杂模型的开发门槛。在部署层面,边缘计算与联邦学习的协同应用不仅缩短了金融预测、医疗影像分析等场景的响应延迟,更通
- 重要重要!!fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵概率论线性代数windows微信机器学习
fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义Fisher信息矩阵(FisherInformationMatrix,FIM)用于衡量模型参数估计的不确定性,其计算和更新在统计学、机器学习和优化中具有重要作用。以下是其计算和更新的关键步骤:一、Fisher矩阵的计算定义Fisher矩阵的元素表示对数似然函数关于参数的二阶导数的期望值的负数,即:Fi,j=−
- 基于roop/insightface将视频中包含指定人脸的视频片段提取并合并成新视频
阆遤
pythonrooppytorchinsightface
利用insightface.app.FaceAnalysis提最一个视频中包含指定人脸的视频片段,并将其合并成一个新视频,使用“buffalo_l”模型,模型需安装在代码当前目录下的.\models中。需要roop或其他支持pytorch、insightface、moviepy的环境。pytorch安装请见我其他文章。#cython:language_level=3str#-*-coding:ut
- 关于pytorch3d的安装
诚威_lol_中大努力中
人工智能pytorch人工智能python
更新1:2025_2_04今天发现,原来的pytorch3d不见了,在我的aaa1环境中。重新安装,我发现最好用的还是去github下载最新的pytorch3d的zip,unzip之后,进去pipinstall-e.然后安装成功!1、参考文章1:windows安装PyTorch3D详细指南-哔哩哔哩(bilibili.com)这篇文章巨好2、参考文章2:pytorch3d/INSTALL.mdat
- 使用Jupyter Notebook进行深度学习编程 - 深度学习教程
shandianfk_com
ChatGPTAIjupyter深度学习ide
大家好,今天我们要聊聊如何使用JupyterNotebook进行深度学习编程。深度学习是人工智能领域中的一项重要技术,通过模仿人脑神经网络的方式进行学习和分析。JupyterNotebook作为一个强大的工具,可以帮助我们轻松地进行深度学习编程,尤其适合初学者和研究人员。本文将带领大家一步步了解如何在JupyterNotebook中开展深度学习项目。一、什么是JupyterNotebook?Jup
- 深度学习 Deep Learning 第8章 深度学习优化
odoo中国
AI编程人工智能深度学习人工智能优化
深度学习第8章深度学习的优化章节概述本章深入探讨了深度学习中的优化技术,旨在解决模型训练过程中面临的各种挑战。优化是深度学习的核心环节,直接关系到模型的训练效率和最终性能。本章首先介绍了优化在深度学习中的特殊性,然后详细讨论了多种优化算法,包括随机梯度下降(SGD)、动量法、Nesterov动量法、AdaGrad、RMSProp和Adam等。此外,还探讨了参数初始化策略、自适应学习率方法以及二阶优
- 【零基础入门】一篇弄懂nn.Sequential以及ModuleList的使用(呕心沥血版)
十二月的猫
PyTorch深度学习pytorch零基础入门
个人主页:十二月的猫-CSDN博客系列专栏:《PyTorch科研加速指南:即插即用式模块开发》CSDN博客十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光目录1.前言2.Sequential类的使用2.1序列容器简单注入2.2序列容器字典注入2.3序列容器函数注入2.4序列容器修改2.5序列容器删除3.nn.ModuleList()的使用3.1定义模型3.2使用模型4.总结1.前言《
- 景联文科技提供高质量文本标注服务,驱动AI技术发展
景联文科技
科技人工智能
文本标注是指在原始文本数据上添加标签的过程,这些标签可以用来指示特定的实体、关系、事件等信息,以帮助计算机理解和处理这些数据。文本标注是自然语言处理(NLP)领域的一个重要环节,它通过为文本的不同部分提供具体的含义和上下文信息,增强机器学习和深度学习模型对文本内容的理解能力。标注类型情感分析情感极性:确定文本表达的情感倾向,如正面、负面或中立。强度评估:衡量情感的强烈程度,从轻微到极端不等。命名实
- 景联文科技:以高质量数据标注推动人工智能领域创新与发展
景联文科技
科技人工智能数据标注
在当今这个由数据驱动的时代,高质量的数据标注对于推动机器学习、自然语言处理(NLP)、计算机视觉等领域的发展具有不可替代的重要性。数据标注过程涉及对原始数据进行加工,通过标注特定对象的特征来生成能够被机器学习模型识别和使用的编码格式,从而使数据更具有意义和可解读性。数据标注的主要类型包括:图像标注:指在图片中标识出目标物体的位置、形状或类别等信息,如自动驾驶技术中的行人、车辆及交通标志的识别。文本
- 客服机器人怎么才能精准的回答用户问题?
玩人工智能的辣条哥
AI面试机器人客服机器人
环境:客服机器人问题描述:客服机器人怎么才能精准的回答用户问题?解决方案:客服机器人要精准回答用户问题,需综合技术、数据和用户体验等多方面因素。以下是关键策略和步骤:1.精准理解用户意图自然语言处理(NLP)技术分词与实体识别:提取关键词(如“订单号”“退货”)和实体(如时间、地点)。意图分类:通过机器学习模型(如BERT、Transformer)将问题归类(如“售后”“支付”)。上下文理解记录对
- 深度学习篇---对角矩阵&矩阵的秩&奇异矩阵
Ronin-Lotus
程序代码篇深度学习篇深度学习矩阵人工智能线性代数
文章目录前言一、对角矩阵(DiagonalMatrix)1.1定义1.2特性行列式运算简化1.3应用领域深度学习信号处理量子力学经济学二、矩阵的秩(RankofaMatrix)2.1定义2.2特性满秩降秩影响2.3应用领域深度学习图像压缩推荐系统控制理论三、奇异矩阵(SingularMatrix)3.1定义3.2特性秩不足行列式为零3.3应用领域深度学习正则化损失函数结构工程统计学数值计算四、跨领
- DeepSeek、Grok 与 ChatGPT 三巨头:技术架构与应用场景的全方位解析
云策量化
Deepseekchatgptdeepseekgrok
前言在当今人工智能领域,DeepSeek、Grok和ChatGPT作为语言模型的三巨头,各自凭借独特的技术架构和广泛的应用场景,在自然语言处理领域占据着重要地位。本文将对这三款模型的技术架构和应用场景进行全方位解析,以期为读者提供深入的了解和有价值的参考。一、技术架构(一)DeepSeekDeepSeek是由DeepSeek团队开发的一款大型语言模型,其技术架构基于深度学习中的Transforme
- OpenCV 4.2.0与扩展模块安装与应用指南
土城三富
本文还有配套的精品资源,点击获取简介:OpenCV4.2.0是一个先进的计算机视觉库,包含了图像处理、计算机视觉和机器学习算法。本压缩包包含OpenCV核心库和扩展模块(opencv_contrib),版本均为4.2.0。该版本引入了性能增强、API优化以及对深度学习框架和硬件加速技术的更新支持。扩展模块提供了额外的实验性算法和功能,有助于研究和开发新算法。指南详细介绍了如何安装和配置这些库,并提
- OpenCV ML 模块使用指南
ice_junjun
OpenCVopencv人工智能计算机视觉
一、模块概述OpenCV的ML模块提供了丰富的机器学习算法,可用于解决各种计算机视觉和数据分析问题。本指南将详细介绍该模块中主要的机器学习算法,包括支持向量机(SVM)、K均值聚类(K-Means)和神经网络(ANN),并结合图像分类和聚类分析这两个典型应用场景进行代码实现与解释。二、主要函数及类详解(一)支持向量机(SVM):cv.ml.SVM_create()功能支持向量机(SVM)是一种强大
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l