首先,神经网络的激活函数选择Sigmoid和Relu两种。神经网络的隐藏层选择Relu激活函数,输出层选择Sigmoid激活函数。
function [y] = sigmoid(x)
%sigmoid sigmoid激活函数
% 此处显示详细说明
y = 1./(1 + exp(-x));
end
function [y] = relu(x)
%relu 激活函数
% 此处显示详细说明
p = (x > 0);
y = x.*p;
end
创建深度网络的结构
function [dnn,parameter] = creatnn(K)
%UNTITLED6 此处显示有关此函数的摘要
% parameter 是结构体,包括参数:
% learning_rate: 学习率
% momentum: 动量系数,一般为0.5,0.9,0.99
% attenuation_rate: 衰减系数
% delta:稳定数值
% step: 步长 一般为 0.001
% method: 方法{'SGD','mSGD','nSGD','AdaGrad','RMSProp','nRMSProp','Adam'}
L = size(K.a,2);
for i = 1:L-1
dnn{i}.W = unifrnd(-sqrt(6/(K.a(i)+K.a(i+1))),sqrt(6/(K.a(i)+K.a(i+1))),K.a(i+1),K.a(i));
% dnn{i}.W = normrnd(0,0.1,K.a(i+1),K.a(i));
dnn{i}.function = K.f{i};
dnn{i}.b = 0.01*ones(K.a(i+1),1);
end
parameter.learning_rate = 0.01;
parameter.momentum = 0.9;
parameter.attenuation_rate = 0.9;
parameter.delta = 1e-6;
parameter.step = 0.001;
parameter.method = "SGD";
parameter.beta1 = 0.9;
parameter.beta2 = 0.999;
end
构建前向传播函数
function [y, Y] = forwordprop(dnn,x)
%UNTITLED3 此处显示有关此函数的摘要
% 此处显示详细说明
L = size(dnn,2);
m = size(x,2);
Y{1} = x;
for i = 1:L
z = dnn{i}.W*x + repmat(dnn{i}.b,1,m);
if dnn{i}.function == "relu"
y = relu(z);
end
if dnn{i}.function == "sigmoid"
y = sigmoid(z);
end
Y{i+1} = y;
x = y;
end
end
构建反向误差传播函数
function [dnn] = backprop(x,label,dnn,parameter)
%UNTITLED2 此处显示有关此函数的摘要
% parameter 是结构体,包括参数:
% learning_rate: 学习率
% momentum: 动量系数,一般为0.5,0.9,0.99
% attenuation_rate: 衰减系数
% delta:稳定数值
% step: 步长 一般为 0.001
% method: 方法{'SGD','mSGD','nSGD','AdaGrad','RMSProp','nRMSProp','Adam'}
%
L = size(dnn,2)+1;
m = size(x,2);
[y, Y] = forwordprop(dnn,x);
g = -label./y + (1 - label)./(1 - y);
method = {"SGD","mSGD","nSGD","AdaGrad","RMSProp","nRMSProp","Adam"};
persistent global_step;
if isempty(global_step)
global_step = 0;
end
global_step = global_step + 1;
% fprintf("global_step %d\n",global_step)
global E;
E(global_step) = sum(sum(-label.*log(y)-(1 - label).*log(1 - y)))/m;
persistent V;
if isempty(V)
for i = 1:L-1
V{i}.vw = dnn{i}.W*0;
V{i}.vb = dnn{i}.b*0;
end
end
if parameter.method == method{1,1}
for i = L : -1 : 2
if dnn{i-1}.function == "relu"
g = g.*(Y{i} > 0);
end
if dnn{i-1}.function == "sigmoid"
g = g.*Y{i}.*(1 - Y{i});
end
dw = g*Y{i - 1}.'/m;
db = sum(g,2)/m;
g = dnn{i-1}.W'*g;
dnn{i-1}.W = dnn{i-1}.W - parameter.learning_rate*dw;
dnn{i-1}.b = dnn{i-1}.b - parameter.learning_rate*db;
end
end
if parameter.method == method{1,2}
for i = L : -1 : 2
if dnn{i-1}.function == "relu"
g = g.*(Y{i} > 0);
end
if dnn{i-1}.function == "sigmoid"
g = g.*Y{i}.*(1 - Y{i});
end
dw = g*Y{i - 1}.'/m;
db = sum(g,2)/m;
g = dnn{i-1}.W'*g;
V{i-1}.vw = parameter.momentum*V{i-1}.vw - parameter.learning_rate*dw;
V{i-1}.vb = parameter.momentum*V{i-1}.vb - parameter.learning_rate*db;
dnn{i-1}.W = dnn{i-1}.W + V{i-1}.vw;
dnn{i-1}.b = dnn{i-1}.b + V{i-1}.vb;
end
end
if parameter.method == method{1,3} % 未实现
for i = L : -1 : 2
if dnn{i-1}.function == "relu"
g = g.*(Y{i} > 0);
end
if dnn{i-1}.function == "sigmoid"
g = g.*Y{i}.*(1 - Y{i});
end
dw = g*Y{i - 1}.'/m;
db = sum(g,2)/m;
g = dnn{i-1}.W'*g;
V{i-1}.vw = parameter.momentum*V{i-1}.vw - parameter.learning_rate*dw;
V{i-1}.vb = parameter.momentum*V{i-1}.vb - parameter.learning_rate*db;
dnn{i-1}.W = dnn{i-1}.W + V{i-1}.vw;
dnn{i-1}.b = dnn{i-1}.b + V{i-1}.vb;
end
end
if parameter.method == method{1,4}
for i = L : -1 : 2
if dnn{i-1}.function == "relu"
g = g.*(Y{i} > 0);
end
if dnn{i-1}.function == "sigmoid"
g = g.*Y{i}.*(1 - Y{i});
end
dw = g*Y{i - 1}.'/m;
db = sum(g,2)/m;
g = dnn{i-1}.W'*g;
V{i-1}.vw = V{i-1}.vw + dw.*dw;
V{i-1}.vb = V{i-1}.vb + db.*db;
dnn{i-1}.W = dnn{i-1}.W - parameter.learning_rate./(parameter.delta + sqrt(V{i-1}.vw)).*dw;
dnn{i-1}.b = dnn{i-1}.b - parameter.learning_rate./(parameter.delta + sqrt(V{i-1}.vb)).*db;
end
end
if parameter.method == method{1,5}
for i = L : -1 : 2
if dnn{i-1}.function == "relu"
g = g.*(Y{i} > 0);
end
if dnn{i-1}.function == "sigmoid"
g = g.*Y{i}.*(1 - Y{i});
end
dw = g*Y{i - 1}.'/m;
db = sum(g,2)/m;
g = dnn{i-1}.W'*g;
V{i-1}.vw = parameter.attenuation_rate*V{i-1}.vw + (1 - parameter.attenuation_rate)*dw.*dw;
V{i-1}.vb = parameter.attenuation_rate*V{i-1}.vb + (1 - parameter.attenuation_rate)*db.*db;
dnn{i-1}.W = dnn{i-1}.W - parameter.learning_rate./sqrt(parameter.delta + V{i-1}.vw).*dw;
dnn{i-1}.b = dnn{i-1}.b - parameter.learning_rate./sqrt(parameter.delta + V{i-1}.vb).*db;
end
end
persistent s;
if parameter.method == method{1,7}
if isempty(s)
for i = 1:L-1
s{i}.vw = dnn{i}.W*0;
s{i}.vb = dnn{i}.b*0;
end
end
for i = L : -1 : 2
if dnn{i-1}.function == "relu"
g = g.*(Y{i} > 0);
end
if dnn{i-1}.function == "sigmoid"
g = g.*Y{i}.*(1 - Y{i});
end
dw = g*Y{i - 1}.'/m;
db = sum(g,2)/m;
g = dnn{i-1}.W'*g;
s{i-1}.vw = parameter.beta2*s{i-1}.vw + (1 - parameter.beta1)*dw;
s{i-1}.vb = parameter.beta2*s{i-1}.vb + (1 - parameter.beta1)*db;
V{i-1}.vw = parameter.beta2*V{i-1}.vw + (1 - parameter.beta2)*dw.*dw;
V{i-1}.vb = parameter.beta2*V{i-1}.vb + (1 - parameter.beta2)*db.*db;
dnn{i-1}.W = dnn{i-1}.W - parameter.learning_rate*(s{i-1}.vw/(1-parameter.beta1.^global_step))./(parameter.delta + sqrt(V{i-1}.vw./(1 - parameter.beta2.^global_step)));
dnn{i-1}.b = dnn{i-1}.b - parameter.learning_rate*(s{i-1}.vb/(1-parameter.beta1.^global_step))./(parameter.delta + sqrt(V{i-1}.vb./(1 - parameter.beta2.^global_step)));
end
end
end
好了,到这里,网络需要的函数都搭建完成了。下面开始构建一个双隐层的前馈神经网络,实现mnist数据集的识别。
clear all
load('mnist_uint8.mat');
test_x = (double(test_x)/255)';
train_x = (double(train_x)/255)';
test_y = double(test_y.');
train_y = double(train_y.');
K.f = {"relu","relu","relu","sigmoid"};
K.a = [784,400,300,500,10];
[net,P] = creatnn(K);
P.method = "RMSProp";
P.learning_rate = 0.001;
m = size(train_x,2);
batch_size = 100;
MAX_P = 2000;
global E;
for i = 1:MAX_P
q = randi(m,1,batch_size);
train = train_x(:,q);
label = train_y(:,q);
net = backprop(train,label,net,P);
if mod(i,50) == 0
[output,~] = forwordprop(net,train);
[~,index0] = max(output);
[~,index1] = max(label);
rate = sum(index0 == index1)/batch_size;
fprintf("第%d训练包的正确率:%f\n",i,rate)
[output,~] = forwordprop(net,test_x);
[~,index0] = max(output);
[~,index1] = max(test_y);
rate = sum(index0 == index1)/size(test_x,2);
fprintf("测试集的正确率:%f\n",rate)
end
end