暑假N天乐【比赛篇】 —— 2019牛客暑期多校训练营(第二场)

最近几天都没写博客,真是没什么时间写了,专题卡着,一周四场比赛,场场爆零,补题都补傻了。第一场还差两题可能今天补掉吧,昨天的杭电也是完全没动,感觉...很烦

第二场牛客断断续续也是补了几天...大概一天也就两题这样,然后补了六题感觉差不多了,就先放上来好了。

以下题解包括:\(A \ \ \ D \ \ \ E \ \ \ F \ \ \ H \ \ \ J\)

比赛地址: https://ac.nowcoder.com/acm/contest/882#question

【A】 Eddy Walker 数学

题目极长,赛中看了几眼读不下去了,然后就放掉了。问别人通过的全是暴力找规律...

给定圆上有 n 个点,初始点 0,每次会向左或向右移动一步(等可能),如果某一时刻所有点均被至少访问过一次则停止移动,问最终停留在 m 点的概率。

\(m \neq 0\)\(n \neq 1\),则 \(ans = \frac{1}{n-1}\)。emmm公式咋得到的建议去博客 DeaphetS 看,我懒得敲了....然后答案就是再求个逆元就完事了。

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;

ll q_pow(ll a, ll b) {
    ll res = 1;
    while(b) {
        if(b & 1) {
            res = res * a % mod;
        }
        a = a * a % mod;
        b >>= 1;
    }
    return res;
}

int main() {
    int t;
    scanf("%d", &t);
    ll ans = 1;
    while(t--) {
        int n, m;
        scanf("%d%d", &n, &m);
        if(n == 1) {
            printf("%lld\n", ans);
            continue;
        }
        if(m == 0){
            ans = 0;
        }
        else {
            ans = ans * q_pow((long long)n-1, (long long)mod-2) % mod;
        }
        printf("%lld\n", ans);
    }
    return 0;
}

【D】 Kth Minimum Clique 优先队列BFS+状压

给定一个有 n 个顶点的无向图,求它的第 K 小完全子图(团)。

反着推,最小团就是空集,不断向空集里加点,从而找到第 K 小团。

采用优先队列,把权值小的团出队,拿去拓展其他状态。为了不重复加点,需要每次在当前状态的已选中的点中下标最大的点后面拓展,这样就可以把所有点都遍历一次了。

用 bitset 来保存点连接状态可以直接判断该点是否与团的每个点相连。

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;

const int maxn = 100+5;

ll w[maxn];
char a[maxn][maxn];
bitset mp[maxn];

struct G {
    bitset st;
    ll sum;
    bool operator < (const G &x) const {
        return sum > x.sum;
    }
};

ll bfs(int n, int k) {
    priority_queue q;
    G temp;
    temp.st.reset();    // clear
    temp.sum = 0;
    q.push(temp);
    while(!q.empty()) {
        G u = q.top();
        q.pop();
        k --;
        // cout << u.st << endl;
        // cout << u.sum <

【E】 MAZE 线段树+矩阵乘法

给定一个 n*m 的迷宫,0表示能走的路,1表示不能。每次可以向左、向右、向下移动一格且不能回头。有 q 次操作,1表示把 [x, y] 位置进行翻转(0变1、1变0),2表示查询 “从 [1, x] 到 [n, y]的方案数”。【\(n \leq 5e4、m \leq 10\)

首先,看到这个取值范围就知道这题肯定怪怪的对吧。然后?我也不会,以下题解来自 [https://www.cnblogs.com/DeaphetS/p/11222740.html] 。(https://www.cnblogs.com/DeaphetS/p/11222740.html)

\(f(i,j)\) 为走到 \((i,j)\) 的方案数,且第 \(i\) 行里包含点 \((i,j)\) 的区间为 \([l,r]\),则有 \(f(i,j)=\sum^{r}_{k=l} f(i−1,k)\),这里的 \(k\) 就代表着从前一行的第 \(k\) 列走下来。可以发现这个转移方程可以转换成一个矩阵形式: \[(f(i,1),f(i,2),...,f(i,m))=(f(i−1,1),f(i−1,2),...,f(i−1,m))*A\]

其中 \(A\) 为状态转移矩阵。求从第 \(i−1\) 行到第 \(i\) 行的转移矩阵可以用 \(o(m^2)\) 的时间复杂度来实现的。而最后一行的答案就是第一行的状态矩阵乘上这 \(n\) 行转移矩阵的乘积。在本题中,由于给出了起点和终点,所以若设这 \(n\) 行转移矩阵的乘积为\(A\),则答案就是 \(A(a,b)\)。用线段树维护每行的矩阵以及区间的矩阵乘积即可。

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;

const int maxn = 5e4+5;
const int maxm = 10+5;

int n, m, q;
int a[maxn][maxm];

struct mat {
    ll a[maxm][maxm];
    inline mat operator * (const mat &x) const {
        mat temp;
        memset(temp.a, 0, sizeof(temp.a));
        for(int i = 1; i <= m; i++) {
            for(int j = 1; j <= m; j++) {
                for(int k = 1; k <= m; k++) {
                    temp.a[i][j] += 1ll * a[i][k] * x.a[k][j] % mod;
                    temp.a[i][j] = temp.a[i][j] % mod;
                }
            }
        }
        return temp;
    }
}T[maxn << 2];

void build(int l, int r, int rt) {
    if(l == r) {
        memset(T[rt].a, 0, sizeof(T[rt].a));
        for(int i = 1; i <= m; i++) {
            int k = i;
            while(k >= 1 && a[l][k] == 0) {
                T[rt].a[i][k] = 1;
                k--;
            }
            k = i;
            while(k <= m && a[l][k] == 0) {
                T[rt].a[i][k] = 1;
                k++;
            }
        }
        return ;
    }
    int mid = (l+r) >> 1;
    build(l, mid, 2*rt);
    build(mid+1, r, 2*rt+1);
    T[rt] = T[2*rt] * T[2*rt+1];
}

void update(int l, int r, int rt, int x) {
    if(l == r) {
        memset(T[rt].a, 0, sizeof(T[rt].a));
        for(int i = 1; i <= m; i++) {
            int k = i;
            while(k >= 1 && a[l][k] == 0) {
                T[rt].a[i][k] = 1;
                k--;
            }
            k = i;
            while(k <= m && a[l][k] == 0) {
                T[rt].a[i][k] = 1;
                k++;
            }
        }
        return ;        
    }
    int mid = (l+r) >> 1;
    if(x <= mid) {
        update(l, mid, 2*rt, x);
    }
    else {
        update(mid+1, r, 2*rt+1, x);
    }
    T[rt] = T[2*rt] * T[2*rt+1];
}

int main() {
    scanf("%d%d%d", &n, &m, &q);
    for(int i = 1; i <= n; i++) {
        char s[15];
        scanf("%s", s+1);
        for(int j = 1; j <= m; j++) {
            a[i][j] = s[j]-'0';
        }
    }
    build(1, n, 1);
    while(q--) {
        int f, x, y;
        scanf("%d%d%d", &f, &x, &y);
        if(f == 1) {
            if(a[x][y] == 0) {
                a[x][y] = 1;
            }
            else {
                a[x][y] = 0;
            }
            update(1, n, 1, x);
        }
        else {
            printf("%lld\n", T[1].a[x][y]);
        }
    }
    return 0;
}

【F】 Partition problem 暴力搜索

三个人在那边互相否定,结果没一个复杂度算对的 ······

有 2*n 个人要平均分成两队,给定 \(v[i, j]\) 表示 \(i\)\(j\) 在不同队伍的“竞争值”。问最大的竞争值是多少。

爆搜,\(C^{14}_{28}*28 = 1123264800\) (应该没算错)。当然加了一点点的剪枝,不过好像真的很暴力就是了。

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;
 
const int maxn = 35;
 
int n;
int a[maxn][maxn];
ll sum[maxn] = {0};
int choose[maxn] = {0};
ll ans = 0;
 
void dfs(int now, int cnt, ll temp) {
    if(cnt*2 == n) {
        ans = max(ans, temp);
        return ;
    }
    for(int i = now+1; i <= n; i++) {
        if(choose[i]) {
            continue;
        }
        choose[cnt+1] = i;
        ll x = temp;
        for(int j = 1; j <= cnt; j++) {
            x = x - 2ll*a[i][choose[j]];
        }
        x = x + sum[i];
        dfs(i, cnt+1, x);
        choose[cnt+1] = 0;
    }
}
 
int main() {
    scanf("%d", &n);
    n *= 2;
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= n; j++) {
            scanf("%d", &a[i][j]);
            sum[i] += 1ll*a[i][j];
        }
    }
    choose[1] = 1;
    dfs(1, 1, sum[1]);
    printf("%lld\n", ans);
    return 0;
}

【H】 Second Large Rectangle 单调栈

我也不知道为何比赛中就死机了,对着一个假算法debug到死 ······

得定一个由 01 构成的矩阵,求这个矩阵里完全由 1 构成的 第二大矩形。

其实就是维护每一点上方的连续 1 的数量,然后和之前一列的高度进行比较,之前的大就不能用之前的(出队),然后计算 3 次可能的矩形面积。然后...就没有然后了。之前自己的假算法卡死在了去重...我也不知道脑子为啥抽了。

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;
 
const int maxn = 1e3+5;
 
char a[maxn][maxn];
int num[maxn][maxn];
 
struct node {
    int h, w;
};
 
int main() {
    // fopen("in.txt", "r", stdin);
    // fopen("out.txt", "w", stdout);
    int n, m;
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i++) {
        scanf("%s", a[i]+1);
    }
    int MAX = 0, ans = 0;
    for(int i = 1; i <= n; i++) {
        stack s;
        for(int j = 1; j <= m; j++) {
            if(a[i][j] == '0') {
                num[i][j] = 0;
            }
            else {
                num[i][j] = num[i-1][j]+1;
            }
        }
        for(int j = 1; j <= m+1; j++) {
            int w = 0;
            while(!s.empty() && s.top().h > num[i][j]) {
                int h = s.top().h;
                w += s.top().w;
                s.pop();
                if(h*w >= MAX) {
                    ans = MAX;
                    MAX = h*w;
                }
                else if(h*w > ans) {
                    ans = h*w;
                }
                if((h-1)*w >= MAX) {
                    ans = MAX;
                    MAX = (h-1)*w;
                }
                else if((h-1)*w > ans) {
                    ans = (h-1)*w;
                }
                if(h*(w-1) >= MAX) {
                    ans = MAX;
                    MAX = h*(w-1);
                }
                else if(h*(w-1) > ans) {
                    ans = h*(w-1);
                }       
            }
            s.push(node{num[i][j], w+1});
        }
    }
    printf("%d\n", ans);
    return 0;
}

【J】 Subarray 贪心

固定长度为 1e9 的字符串只包含 1 和 -1 ,其中有 \(n (\leq 1e6)\) 段由 1 构成且 1 的数量小于 1e7,其余都是 -1。问存在多少个区间 \([l,r]\),使得区间和大于0。

贪心。先预处理对于每个 1 区间左端和右端分别可以延伸到哪里。之后需要从头到尾依次枚举,注意需要用 pos 标记以防重复。由于存在负值所以数组需要翻倍。由于不存在重复跑一个点,因此复杂度最多也是 1e7 级别。

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int inf = 1e9;
const int mod = 1e9 + 7;
 
const int maxn = 1e6+5;
 
int l[maxn], r[maxn];
int lmore[maxn], rmore[maxn];
int f[20000005];
 
int main() {
    int n, s;
    scanf("%d", &n);
    for(int i = 1; i <= n; i++) {
        scanf("%d%d", &l[i], &r[i]);
    }
    l[0] = r[0] = -1;
    l[n+1] = r[n+1] = inf;
    s = r[1] - l[1] + 1;
    for(int i = 1; i <= n; i++) {
        rmore[i] = min(s, l[i+1]-r[i]-1);   // 多减 1 保证大于 0
        s = s - (l[i+1]-r[i]-1);
        if(s < 0) {
            s = 0;
        }
        s = s + (r[i+1]-l[i+1]+1);
    }
    s = r[n] - l[n] + 1;
    for(int i = n; i >= 1; i--) {
        lmore[i] = min(s, l[i]-r[i-1]-1);
        s = s - (l[i]-r[i-1]-1);
        if(s < 0) {
            s = 0;
        }
        s = s + (r[i-1]-l[i-1]+1);
    }
    s = 10000000;
    f[s] = 1;
    ll ans = 0, temp = 1;
    int pos = 0;
    for(int i = 1; i <= n; i++) {
        for(int j = max(pos, l[i]-lmore[i]); j <= r[i]+rmore[i]; j++) {
            if(j >= l[i] && j <= r[i]) {
                s ++;
                ++f[s];
                temp = temp + f[s];
            }
            else {
                s --;
                ++f[s];
                temp = temp - (f[s+1] - 1);
            }
            ans = ans + (temp - f[s]);
        }
        pos = r[i] + rmore[i] + 1;
    }
    printf("%lld\n", ans);
    return 0;
}

转载于:https://www.cnblogs.com/Decray/p/11232973.html

你可能感兴趣的:(暑假N天乐【比赛篇】 —— 2019牛客暑期多校训练营(第二场))