- .NET9 实现字符串拼接(StringConcatenation)性能测试
ChaITSimpleLove
.NET跨平台.netstring拼接字符串拼接性能测试BenchmarkTestcsharp
为了评估.NET9平台上使用C#中不同字符串拼接操作的性能表现,我们可以使用BenchmarkDotNet这一强大的开源库来构建科学且可重复的基准测试。BenchmarkDotNet能够自动处理诸如JIT编译、预热(Warm-up)、运行次数控制、统计误差分析等底层细节,确保测试结果具有高度准确性与可比性。在.NET9中,使用C#字符串拼接的常见方式包括:使用+运算符使用string.Concat
- 医咖会免费STATA教程学习笔记——单因素方差分析
Unacandoit
stata单因素方差分析
单因素方差分析和单因素回归分析相同1.单因素方差分析需要满足的假设:(1)因变量为连续变量(2)至少有一个分类变量(大于等于2类)(3)观测值相互独立(4)没有异常值(5)服从正态分布(6)方差齐性2.准备工作(1)导入数据集:webusesystolic,clear(2)检验是否存在异常值:方法一:图形——箱线图——在变量中选择systolic——确定方法二:grahboxsystolic,ov
- 60天python训练计划----day59
在之前的学习中,我们层层递进的介绍了时序模型的发展,从AR到MA到ARMA,再到ARIMA。本质就是把数据处理的操作和模型结合在一起了,实际上昨天提到的季节性差分也可以合并到模型中,让流程变得更加统一。季节性差分用S来表示,所以这个模型叫做SARIMA模型一、SARIMA模型SARIMA(SeasonalAutoRegressiveIntegratedMovingAverage)是标准ARIMA模
- 无人机RTK技术要点与难点分析
云卓SKYDROID
无人机人工智能高科技云卓科技科普
一、RTK技术核心要点1.定位原理与精度提升RTK通过基准站与无人机(移动站)的实时差分计算消除误差。基准站已知精确坐标,将其观测的卫星载波相位数据发送给无人机,无人机通过对比自身接收的卫星信号与基准站数据的相位差,实现厘米级定位(水平1cm+1ppm,垂直2cm+1ppm)。相比普通GPS(米级误差),RTK显著解决了电离层延迟、对流层折射、卫星钟差等误差源。2.系统组成关键双天线设计:部分方案
- GC8138:军用级高性能全差分运放,完美替代AD8138的革新方案
上海宸屿电子
电子元器件国产替代
上海宸屿推出的GC8138全差分运算放大器,凭借低噪声、高带宽、高压摆率以及输出轨至轨的特性,支持单端转差分/差分至差分信号处理,显著简化了差分信号放大与驱动设计流程。其电压噪声仅为3.5nV√Hz(100kHz~40MHz),失调电压为±0.5mV,关键性能全面优于AD8138,可实现完美替代。军用级可靠性升级全系封装覆盖:除标准工业级(SOIC/MSOP)封装外,独家推出N1级军用封装,支持-
- python打卡day58@浙大疏锦行
风逸hhh
python打卡60天行动python开发语言
知识点回顾:时序建模的流程时序任务经典单变量数据集ARIMA(p,d,q)模型实战SARIMA摘要图的理解处理不平稳的2种差分n阶差分---处理趋势季节性差分---处理季节性建立一个ARIMA模型,通常遵循以下步骤:1.数据可视化:观察原始时间序列图,判断是否存在趋势或季节性。2.平稳性检验:-对原始序列进行ADF检验。-如果p值>0.05,说明序列非平稳,需要进行差分。3.确定差分次数d:-进行
- R语言学习笔记之十
摘要:仅用于记录R语言学习过程:内容提要:描述性统计;t检验;数据转换;方差分析;卡方检验;回归分析与模型诊断;生存分析;COX回归写在正文前的话,关于基础知识,此篇为终结篇,笔记来自医学方的课程,仅用于学习R的过程。正文:描述性统计n如何去生成table1用table()函数,快速汇总频数u生成四格表:table(行名,列名)>table(tips$sex,tips$smoker)NoYesFe
- 两个点 定位_基于双天线的北斗定位系统设计与实现
weixin_39697096
两个点定位
前期实际北斗模块定位误差统计分析中得出了北斗模块的定位误差分布服从正态分布,根据北斗模块定位误差分布的规律,利用在同一块电路板上的双天线模块接收北斗定位信号,将定位信息传给TMS320F28335DSP芯片,DSP对北斗模块给出的定位信息做实时算法处理,并将处理后的定位信息传给嵌入式ARM芯片,ARM芯片在TFT液晶屏上更新定位信息,同时根据用户要求来设置北斗模块的工作模式。在接收不到北斗定位信息
- 《二分枚举答案(配合经典算法)》题集
英雄哪里出来
算法数据结构英雄算法联盟二分
文章目录1、模板题集2、课内题集3、课后题集1.差分2.贪心/排序3.二维前缀和4.K大数5.BFS6.最短路7.数位DP1、模板题集分巧克力2、课内题集倒水冶炼金属连续子序列的个数3、课后题集括号内的整数代表完整代码行数。1.差分粉刷小能手小蓝(42)操作数组的最小次数(43)森林的最大美丽值(44)2.贪心/排序信号塔(33)可得到的最大团队默契(35)3.二维前缀和小秋的矩阵(48)4.K大
- Python Day58
别勉.
python机器学习python信息可视化数据分析
Task:1.时序建模的流程2.时序任务经典单变量数据集3.ARIMA(p,d,q)模型实战4.SARIMA摘要图的理解5.处理不平稳的2种差分a.n阶差分—处理趋势b.季节性差分—处理季节性建立一个ARIMA模型,通常遵循以下步骤:数据可视化:观察原始时间序列图,判断是否存在趋势或季节性。平稳性检验:对原始序列进行ADF检验。如果p值>0.05,说明序列非平稳,需要进行差分。确定差分次数d:进行
- Python Day57
别勉.
python机器学习python开发语言
Task:1.序列数据的处理:a.处理非平稳性:n阶差分b.处理季节性:季节性差分c.自回归性无需处理2.模型的选择a.AR§自回归模型:当前值受到过去p个值的影响b.MA(q)移动平均模型:当前值收到短期冲击的影响,且冲击影响随时间衰减c.ARMA(p,q)自回归滑动平均模型:同时存在自回归和冲击影响时间序列分析:ARIMA/SARIMA模型构建流程时间序列分析的核心目标是理解序列的过去行为,并
- 【Linux】写时拷贝——干货解析
代码程序猿RIP
Linuxlinux运维服务器
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录一、写时拷贝核心概念1.什么是写时拷贝?2.COW解决的问题二、写时拷贝工作原理1.内存管理基础结构2.COW工作流程3.页表状态变化图示初始状态(共享只读)子进程写入后(写时拷贝)三、写时拷贝的优势分析1.性能优势对比2.实际性能数据3.资源利用率提升四、内核实现深度解析1.COW核心代码逻辑2.关键数据结构五、应用场景与最
- 无人设备遥控器之RTK技术篇
SKYDROID云卓小助手
信号处理人工智能嵌入式硬件算法自动化
RTK(Real-TimeKinematic,实时动态差分)技术是一种基于载波相位测量的高精度卫星导航定位技术,在无人设备(如无人机、无人车、无人船)遥控器中应用广泛,可显著提升设备的定位精度与作业效能。一、技术原理:载波相位差分实现厘米级定位RTK技术的核心在于通过基准站与流动站(无人设备)之间的实时数据交互,消除卫星信号传播过程中的公共误差,实现厘米级定位精度。具体流程如下:基准站观测:部署在
- 鼎盛合|如何做一个智能测脂懒啊体脂秤方案?
鼎盛合设计开发
单片机mcu
随着健康管理意识的提升,智能体脂秤逐渐成为家庭健康监测的核心设备。本文基于DSH38M93主控芯片与CS1237高精度ADC芯片,提出一种创新性的智能测脂蓝牙电子秤设计方案,重点阐述其技术实现原理与系统架构设计。一、技术原理与核心器件选型称重测量原理采用高精度应变片式传感器构建惠斯通电桥,通过CS1237芯片进行24位Δ-Σ模数转换。当用户站立时,四角传感器产生0-20mV差分信号,经128倍PG
- 半导体器件仿真:功率器件仿真_(12).器件仿真与实验数据对比
kkchenkx
信号仿真2信号处理信息可视化人工智能
器件仿真与实验数据对比在半导体器件仿真中,将仿真结果与实验数据进行对比是验证仿真模型准确性的重要步骤。这一过程不仅能够帮助我们理解仿真模型的优缺点,还可以为后续的设计优化提供指导。本节将详细讨论如何进行器件仿真与实验数据的对比,包括数据处理、对比方法和误差分析。数据处理实验数据的预处理在进行器件仿真与实验数据对比之前,首先需要对实验数据进行预处理。实验数据通常包含多个测量点,这些测量点可能受到噪声
- 点云从入门到精通技术详解100篇-点云滤波算法及单木信息提取
格图素书
人工智能
目录知识储备点云滤波算法及单木信息提取点云条件滤波单木信息提取1.点云预处理2.点云密度计算3.密度阈值筛选4.骨架提取5.骨架细化优化方向前言国内外研究现状激光雷达研究现状点云数据的滤波算法研究现状单木分割应用现状LiDAR工作原理与点云数据的组成2.1LiDAR系统的内部结构2.1.1激光测距单元2.1.2光学机械扫描单元2.1.3惯性导航系统INS2.1.4动态差分GPS2.2定位原理2.3
- matlab瞬变电磁时域有限差分方法
xx155802862xx
matlab开发语言
瞬变电磁时域有限差分方法MATLAB数值仿真教程程序codelisting/Appendix_A/fdtd_1d_code.m,3184codelisting/Appendix_A/initialize_plotting_parameters.m,836codelisting/Appendix_A/plot_fields.m,353codelisting/Appendix_C/polar_plot
- 探秘算法世界:随机近似算法与时序差分法的原理与应用
从零开始学习人工智能
算法
探秘算法世界:随机近似算法与时序差分法的原理与应用在算法的广袤宇宙中,每一种算法都像一颗独特的星辰,散发着属于自己的光芒。今天,我们将聚焦于随机近似算法和时序差分法这两颗耀眼的星星,深入探索它们的原理、应用场景,以及背后千丝万缕的联系。一、随机近似算法:在随机海洋中寻找最优解1.1核心概念:与不确定性共舞随机近似算法,从名字就能看出其特点——随机与近似。在实际问题中,我们常常会遇到目标函数包含随机
- RS485 vs CAN总线:工业通信双雄的深度对决
W说编程
嵌入式物联网自动化物联网嵌入式硬件c语言驱动开发
RS485vsCAN总线:工业通信双雄的深度对决在工业自动化领域,RS485和CAN总线犹如通信技术的"双子星"。本文将深入解析两大主流总线的技术差异,助您在项目选型中做出精准决策。一、总线架构对比1.1物理层差异物理层对比RS485CAN双线制差分传输半双工通信点对多拓扑双线制差分传输多主对等架构总线型拓扑关键差异:拓扑灵活性:RS485支持总线型/星型混合拓扑,CAN仅支持总线型终端电阻:RS
- 鸿蒙应用发布实战:应用热更新的实现
操作系统内核探秘
操作系统内核揭秘harmonyos华为ai
鸿蒙应用发布实战:应用热更新的实现关键词:鸿蒙应用、热更新、OTA、差分更新、HarmonyOS、应用发布、动态部署摘要:本文深入探讨鸿蒙(HarmonyOS)应用热更新的实现原理和实战方案。我们将从鸿蒙应用架构出发,详细分析热更新的技术原理,包括差分更新、动态部署等核心机制。通过完整的代码示例和实战案例,展示如何在鸿蒙应用中实现安全可靠的热更新功能。文章还将讨论热更新在实际业务场景中的应用策略,
- 从并行到串行:计算机总线技术的演进与哲学
泡沫o0
探索计算机世界:从基础开始!c++开发语言linux嵌入式c++11qtarm
目录标题从并行到串行:计算机总线技术的演进与哲学1.总线技术基础:理解数据传输的两种范式1.1总线的本质与分类1.2早期并行总线的设计逻辑1.3串行总线的兴起背景2.技术深层剖析:并行与串行的技术本质差异2.1并行总线的技术挑战与物理限制2.1.1时钟偏移问题的深度分析2.1.2串扰效应的机理与影响2.2串行总线的技术优势与创新2.2.1差分信号技术的应用2.2.2高级编码与调制技术2.2.3自适
- LVDS与GMSL和FPD-Link之间的关系
我是一只有梦想的菜鸟
网络协议
GMSL(GigabitMultimediaSerialLink)和FPD-Link(FlatPanelDisplayLink)并不是严格意义上的LVDS(Low-VoltageDifferentialSignaling,低压差分信号)技术,但它们与LVDS有一定的关联和相似性。以下是它们与LVDS的关系和区别:1LVDS简介LVDS是一种差分信号传输技术,具有以下特点:使用低电压(通常为1.2V
- 特征筛选方法总结(面试准备15)
爱学习的uu
人工智能大数据数据挖掘决策树
非模型方法一.FILTER过滤法:1.缺失值比例(80%以上缺失则删除)/方差注意:连续变量只删方差为0的,因为变量取值范围会影响方差大小。离散类的看各类取值占比,如果是三分类变量可以视作连续变量。函数:VarianceThreshold二.假设检验:卡方检验看离散变量是否独立方差分析看离散和连续变量是否独立F检验看连续变量是否独立三.互信息的关联度指标:相关系数(f_regression:是相关
- RS-485网络故障查找与排除
运维
一、RS-485网络基础与故障特点RS-485是一种半双工、差分信号传输的串行通信总线,常用于远距离(最远1200米)、多节点(最多32个节点)的工业通信场景。其故障特点包括:硬件依赖性强:接线错误、终端电阻缺失、线缆损坏等易导致通信中断。信号易受干扰:差分信号虽抗干扰,但长距离传输或强电磁环境下仍可能出现误码。节点冲突隐蔽:地址冲突、协议不匹配等问题可能导致部分或全部节点通信异常。二、故障排查流
- 攻克AI安全难题:推动人工智能健康前行
AI智能探索者
人工智能安全ai
攻克AI安全难题:推动人工智能健康前行关键词:AI安全、对抗攻击、数据投毒、隐私保护、可信AI摘要:当AI开始诊断疾病、驾驶汽车、审核贷款时,它的“安全”早已不是实验室里的理论问题。本文将用“给小学生讲故事”的方式,拆解AI安全的五大核心威胁(对抗攻击、数据投毒、模型窃取、隐私泄露、算法偏见),结合生活案例、代码实验和真实场景,带你理解AI安全的底层逻辑,并揭示科学家们如何用“对抗训练”“差分隐私
- ZigBee_CC2530_03H_ADC寄存器
ADC支持多达14位模数转换,有效位数(ENOB)多达12位。ADC包括一个具有多达8个独立配置通道的模拟多路转换器和参考电压发生器,并且通过DMA将转换结果写入存储器。具有多种运行模式。ADC主要特征如下:可选的采样率,可设置分辨率(7~12位)。8个独立的输入通道,单端或者差分。参考电压可选为内部、外部单端、外部差分或AVDD5。中断请求产生。转换结束时DMA触发。温度传感器输入。电池测量能力
- OPENPPP2 VMUX 技术探秘(高级指南)
liulilittle
IPMarkdownC/C++网络通信ip信息与通信mux
VMUX技术分析:OPENPPP2中的虚拟多路复用技术一、技术目标连接多路复用通过单个或多个物理链路,承载多个逻辑TCP连接。高性能传输支持数据包乱序重组实现动态流量控制(拥塞检测/加速切换)高效内存管理(缓冲池复用)跨平台调优Windows:QoS差分服务Linux:网络保护连接管理心跳保活超时自动清理防火墙策略集成️二、核心架构图解1.结构总览VMUX核心网络层vmux_net连接层vmux_
- Oracle数据库函数和Python两种方式实现单据无尾差折扣费用分摊
2B数字化文工
数据集成数据库oraclepython
一、引言:业务场景与痛点需求背景我们在做数据集成时,订单折扣费用分摊的常见场景(如电商平台订单拆分、物流费用分摊)。传统分摊方法的尾差问题(如四舍五入导致总金额与原始金额不一致),财务对账有差异。无尾差分摊的核心目标确保分摊后总金额=原始金额,避免财务对账差异。二、计算逻辑说明步骤计算每行分摊比例。按比例分配折扣,保留小数位。处理尾差:将剩余金额分配给最后一行或按特定规则分配。三、代码实现1.Or
- RGB与YUV格式的转换
五月的鱼
一、实验原理:1.图像数据存储方式图像中RGB以像素为单位,存储顺序为B、G、RYUV以整幅图为单位,先存Y,亮度分量,再存U、V,色差分量分别提取rgb图片和yuv图片的RGB与YUV数值,通过转换公式,即可得到另一种图像格式所需数值,再写入新图像,即可转换图像格式。2.RGB与YUV转换关系由电视原理可知,亮度和色差信号的构成如下:Y=0.2990R+0.5870G+0.1140BR-Y=0.
- matlab实现GMSK信号调制和解调
leo__520
matlab开发语言
GMSK信号调制和解调的仿真代码,包含一比特差分、2比特差分、鉴频等常用GMSK解调方案.GMSKModemmatlab/GMSK_Modem.asv,9074GMSKModemmatlab/GMSK_Modem.m,9084GMSKModemmatlab/gmsk_modul.m,2003GMSKModemmatlab/LPF.m,1089GMSKModemmatlab/pul_phas.m,7
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,