蔡少斐
2019E8013261007
说明尺度函数 ϕ ( x ) = 1 , 0.25 ≤ x < 0.75 \phi(x)=1 ,0.25 \le x\lt 0.75 ϕ(x)=1,0.25≤x<0.75并未满足多分辨率分析的第二个要求.
ϕ 1 , 0 ( x ) = 2 ϕ ( 2 x ) = 1 \phi_{1,0}(x)=\sqrt 2 \phi(2x)=1 ϕ1,0(x)=2ϕ(2x)=1 当且仅当满足 0.125 ≤ x < 0.375 0.125 \le x\lt 0.375 0.125≤x<0.375
ϕ 1 , 1 ( x ) = 2 ϕ ( 2 x − 1 ) = 1 \phi_{1,1}(x)=\sqrt 2 \phi(2x-1) = 1 ϕ1,1(x)=2ϕ(2x−1)=1 当且仅当满足 0.675 ≤ x < 0.875 0.675 \le x \lt 0.875 0.675≤x<0.875
可以看出,在 0.375 ≤ x < 0.675 0.375 \le x \lt 0.675 0.375≤x<0.675的位置,显然 ϕ ( x ) \phi(x) ϕ(x)不能由 ϕ 1 , 0 ( x ) , ϕ 1 , 1 ( x ) \phi_{1,0}(x),\phi_{1,1}(x) ϕ1,0(x),ϕ1,1(x)二者进行线性组合得到.
因此该尺度函数并未满足多分辨率分析的第二个要求.
A)
令 j 0 = 1 j_0=1 j0=1重新计算函数 f ( n ) = { 1 , 4 , − 3 , 0 } f(n)=\{1,4,-3,0\} f(n)={1,4,−3,0}在区间 [ 0 , 3 ] [0,3] [0,3]中的一维DWT.
ϕ ( n ) = { 1 , 1 , 1 , 1 } \phi(n)=\{1,1,1,1\} ϕ(n)={1,1,1,1}
ϕ 1 , 0 ( n ) = 2 ϕ ( 2 n − 0 ) = 2 { 1 , 1 , 0 , 0 } \phi_{1,0}(n)=\sqrt 2 \phi(2n-0)=\sqrt2\{1,1,0,0\} ϕ1,0(n)=2ϕ(2n−0)=2{1,1,0,0}
ϕ 1 , 1 ( n ) = 2 ϕ ( 2 n − 1 ) = 2 { 0 , 0 , 1 , 1 } \phi_{1,1}(n)=\sqrt 2 \phi(2n-1)=\sqrt2\{0,0,1,1\} ϕ1,1(n)=2ϕ(2n−1)=2{0,0,1,1}
ψ 1 , 0 ( n ) = 2 ψ ( 2 n − 0 ) = 2 { 1 , − 1 , 0 , 0 } \psi_{1,0}(n)=\sqrt 2 \psi(2n-0)=\sqrt2\{1,-1,0,0\} ψ1,0(n)=2ψ(2n−0)=2{1,−1,0,0}
ψ 1 , 1 ( n ) = 2 ψ ( 2 n − 1 ) = 2 { 0 , 0 , 1 , − 1 } \psi_{1,1}(n)=\sqrt 2 \psi(2n-1)=\sqrt2\{0,0,1,-1\} ψ1,1(n)=2ψ(2n−1)=2{0,0,1,−1}
W ϕ ( 1 , 0 ) = 1 / 2 ∑ x f ( x ) ϕ 1 , 0 ( x ) = 1 / 2 ( 1 ∗ 1 + 4 ∗ 1 − 3 ∗ 0 + 0 ∗ 0 ) = 5 2 / 2 W_{\phi}(1,0)=1/2 \sum_x f(x)\phi_{1,0}(x)=1/2(1*1+4*1-3*0+0*0)=5\sqrt2/2 Wϕ(1,0)=1/2∑xf(x)ϕ1,0(x)=1/2(1∗1+4∗1−3∗0+0∗0)=52/2
W ϕ ( 1 , 1 ) = 1 / 2 ∑ x f ( x ) ϕ 1 , 1 ( x ) = 1 / 2 ( 1 ∗ 0 + 4 ∗ 0 − 3 ∗ 1 + 0 ∗ 1 ) = − 3 2 / 2 W_{\phi}(1,1)=1/2 \sum_x f(x)\phi_{1,1}(x)=1/2(1*0+4*0-3*1+0*1)=-3\sqrt2/2 Wϕ(1,1)=1/2∑xf(x)ϕ1,1(x)=1/2(1∗0+4∗0−3∗1+0∗1)=−32/2
W ψ ( 1 , 0 ) = 1 / 2 ∑ x f ( x ) ψ 1 , 0 ( x ) = 1 / 2 ( 1 ∗ 1 + 4 ∗ − 1 − 3 ∗ 0 + 0 ∗ 0 ) = − 3 2 / 2 W_{\psi}(1,0)=1/2 \sum_x f(x)\psi_{1,0}(x)=1/2(1*1+4*-1-3*0+0*0)=-3\sqrt2/2 Wψ(1,0)=1/2∑xf(x)ψ1,0(x)=1/2(1∗1+4∗−1−3∗0+0∗0)=−32/2
W ψ ( 1 , 1 ) = 1 / 2 ∑ x f ( x ) ψ 1 , 1 ( x ) = 1 / 2 ( 1 ∗ 0 + 4 ∗ 0 − 3 ∗ 1 + 0 ∗ − 1 ) = − 3 2 / 2 W_{\psi}(1,1)=1/2 \sum_x f(x)\psi_{1,1}(x)=1/2(1*0+4*0-3*1+0*-1)=-3\sqrt2/2 Wψ(1,1)=1/2∑xf(x)ψ1,1(x)=1/2(1∗0+4∗0−3∗1+0∗−1)=−32/2
B)
使用(A)的结果根据变换值 f ( 1 ) f(1) f(1)
f ( n ) = 1 / 2 ( W ϕ ( 1 , 0 ) ϕ 1 , 0 ( n ) + W ϕ ( 1 , 1 ) ϕ 1 , 1 ( n ) + W ψ ( 1 , 0 ) ψ 1 , 1 ( n ) + W ψ ( 1 , 0 ) ψ 1 , 1 ( n ) ) f(n)=1/2( W_{\phi}(1,0)\phi_{1,0}(n)+W_{\phi}(1,1)\phi_{1,1}(n)+W_{\psi}(1,0)\psi_{1,1}(n)+W_{\psi}(1,0)\psi_{1,1}(n)) f(n)=1/2(Wϕ(1,0)ϕ1,0(n)+Wϕ(1,1)ϕ1,1(n)+Wψ(1,0)ψ1,1(n)+Wψ(1,0)ψ1,1(n))
f ( 1 ) = 2 / 2 ( 5 2 / 2 ∗ 1 − 3 2 / 2 ∗ 0 − 3 2 / 2 ∗ ( − 1 ) − 3 2 / 2 ∗ 0 ) = 4 f(1)=\sqrt 2/2(5\sqrt2/2*1 -3\sqrt2/2*0 -3\sqrt2/2*(-1) -3\sqrt2/2*0)=4 f(1)=2/2(52/2∗1−32/2∗0−32/2∗(−1)−32/2∗0)=4
现在假设我们有一个长度为8的信号f=[1 3 5 7 4 3 2 1], 利用哈尔小波进行两层的快速小波变换分解,计算各层的滤波器输出,然后再进行完美重建,请利用与书中例子相同的框图进行计算。
W ϕ ( 2 , n ) = f ( n ) = { 1 , 3 , 5 , 7 , 4 , 3 , 2 , 1 } W_{\phi}(2,n) =f(n)=\{1,3,5,7,4,3,2,1\} Wϕ(2,n)=f(n)={1,3,5,7,4,3,2,1}
ϕ ( n ) = { 1 / 2 , 1 / 2 } \phi(n)=\{1/\sqrt2,1/\sqrt2\} ϕ(n)={1/2,1/2}
ψ ( n ) = { 1 / 2 , − 1 / 2 } \psi(n)=\{1/\sqrt2,-1/\sqrt2\} ψ(n)={1/2,−1/2}
W ψ ( 1 , n ) = { 1 , 3 , 5 , 7 , 4 , 3 , 2 , 1 } ∗ { − 1 / 2 , 1 / 2 } ∣ d o w n 2 = 1 / 2 { − 1 , − 2 , − 2 , − 2 , 3 , 1 , 1 , 1 , 0 } ∣ d o w n 2 = 1 / 2 { − 2 , − 2 , 1 , 1 } W_{\psi}(1,n)=\{1,3,5,7,4,3,2,1\}*\{-1/\sqrt2,1/\sqrt2\}|_{down2}=1/\sqrt2\{-1,-2,-2,-2,3,1,1,1,0\}|_{down2}=1/\sqrt2\{-2,-2,1,1\} Wψ(1,n)={1,3,5,7,4,3,2,1}∗{−1/2,1/2}∣down2=1/2{−1,−2,−2,−2,3,1,1,1,0}∣down2=1/2{−2,−2,1,1}
W ϕ ( 1 , n ) = { 1 , 3 , 5 , 7 , 4 , 3 , 2 , 1 } ∗ { 1 / 2 , 1 / 2 } ∣ d o w n 2 = 1 / 2 { 1 , 4 , 8 , 12 , 11 , 7 , 5 , 3 , 0 } ∣ d o w n 2 = 1 / 2 { 4 , 12 , 7 , 3 } W_{\phi}(1,n)=\{1,3,5,7,4,3,2,1\}*\{1/\sqrt2,1/\sqrt2\}|_{down2}=1/\sqrt2\{1,4,8,12,11,7,5,3,0\}|_{down2}=1/\sqrt2\{4,12,7,3\} Wϕ(1,n)={1,3,5,7,4,3,2,1}∗{1/2,1/2}∣down2=1/2{1,4,8,12,11,7,5,3,0}∣down2=1/2{4,12,7,3}
W ψ ( 0 , n ) = 1 / 2 { 4 , 12 , 7 , 3 } ∗ { − 1 / 2 , 1 / 2 } ∣ d o w n 2 = { − 4 , 2 } W_{\psi}(0,n)=1/\sqrt2\{4,12,7,3\}*\{-1/\sqrt2,1/\sqrt2\}|_{down2}=\{-4,2\} Wψ(0,n)=1/2{4,12,7,3}∗{−1/2,1/2}∣down2={−4,2}
W ϕ ( 0 , n ) = 1 / 2 { 4 , 12 , 7 , 3 } ∗ { 1 / 2 , 1 / 2 } ∣ d o w n 2 = { 8 , 5 } W_{\phi}(0,n)=1/\sqrt2\{4,12,7,3\}*\{1/\sqrt2,1/\sqrt2\}|_{down2}=\{8,5\} Wϕ(0,n)=1/2{4,12,7,3}∗{1/2,1/2}∣down2={8,5}
重建:
W ϕ ( 1 , n ) = { − 4 , 0 , 2 , 0 } ∗ 1 / 2 { 1 , − 1 } + { 8 , 0 , 5 , 0 } ∗ 1 / 2 { 1 , 1 } = 1 / 2 { − 4 + 8 , 4 + 8 , 2 + 5 , − 2 + 5 } = 1 / 2 { 4 , 12 , 7 , 3 } W_{\phi}(1,n)=\{-4,0,2,0\}*1/\sqrt2\{1,-1\}+\{8,0,5,0\}*1/\sqrt2\{1,1\}=1/\sqrt 2\{-4+8,4+8,2+5,-2+5\}=1/\sqrt2\{4,12,7,3\} Wϕ(1,n)={−4,0,2,0}∗1/2{1,−1}+{8,0,5,0}∗1/2{1,1}=1/2{−4+8,4+8,2+5,−2+5}=1/2{4,12,7,3}
f ( n ) = W ϕ ( 2 , n ) = 1 / 2 { − 2 , 0 , − 2 , 0 , 1 , 0 , 1 , 0 } ∗ 1 / 2 { 1 , − 1 } + 1 / 2 { 4 , 0 , 12 , 0 , 7 , 0 , 3 , 0 } ∗ 1 / 2 { 1 , 1 } = 1 / 2 { − 2 + 4 , 2 + 4 , − 2 + 12 , 2 + 12 , 1 + 7 , − 1 + 7 , 1 + 3 , − 1 + 3 } = { 1 , 3 , 5 , 7 , 4 , 3 , 2 , 1 } f(n)=W_{\phi}(2,n)=1/\sqrt2\{-2,0,-2,0,1,0,1,0\}*1/\sqrt2\{1,-1\}+1/\sqrt2\{4,0,12,0,7,0,3,0\}*1/\sqrt2\{1,1\}=1/2\{-2+4,2+4,-2+12,2+12,1+7,-1+7,1+3,-1+3\}=\{1,3,5,7,4,3,2,1\} f(n)=Wϕ(2,n)=1/2{−2,0,−2,0,1,0,1,0}∗1/2{1,−1}+1/2{4,0,12,0,7,0,3,0}∗1/2{1,1}=1/2{−2+4,2+4,−2+12,2+12,1+7,−1+7,1+3,−1+3}={1,3,5,7,4,3,2,1}