shareding-jdbc史上最简单的示例

shared-jdbc简介

Sharding-JDBC是当当应用框架ddframe中,从关系型数据库模块dd-rdb中分离出来的数据库水平分片框架,实现透明化数据库分库分表访问。Sharding-JDBC是继dubboxelastic-job之后,ddframe系列开源的第3个项目。

Sharding-JDBC直接封装JDBC协议,可以理解为增强版的JDBC驱动,旧代码迁移成本几乎为零。

Sharding-JDBC定位为轻量级java框架,使用客户端直连数据库,以jar包形式提供服务,无proxy代理层,无需额外部署,无其他依赖,DBA也无需改变原有的运维方式。


1.导入依赖

<dependencies>

<dependency>

<groupId>junitgroupId>

<artifactId>junitartifactId>

<version>4.0version>

<scope>testscope>

dependency>

 

<dependency>

<groupId>io.shardingjdbcgroupId>

<artifactId>sharding-jdbc-coreartifactId>

<version>2.0.0version>

dependency>

 

<dependency>

<groupId>com.alibabagroupId>

<artifactId>druidartifactId>

<version>1.0.13version>

dependency>

<dependency>

<groupId>mysqlgroupId>

<artifactId>mysql-connector-javaartifactId>

<version>5.1.28version>

dependency>

dependencies>

2.表的创建语句

CREATE TABLE `t_order_x` (

  `order_id` int(11) NOT NULL,

  `user_id` int(11) NOT NULL,

  PRIMARY KEY (`order_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8

 

3.获取数据源

package com.irisian.sharedjdbc;

import java.sql.SQLException;

import java.util.HashMap;

import java.util.Map;

import java.util.Properties;

import java.util.concurrent.ConcurrentHashMap;

import javax.sql.DataSource;

import com.alibaba.druid.pool.DruidDataSource;

import io.shardingjdbc.core.api.ShardingDataSourceFactory;

import io.shardingjdbc.core.api.config.ShardingRuleConfiguration;

import io.shardingjdbc.core.api.config.TableRuleConfiguration;

import io.shardingjdbc.core.api.config.strategy.InlineShardingStrategyConfiguration;

public class DateSourceUtils {

public static DataSource getDataSource() throws SQLException {

 

// 配置真实数据源

Map dataSourceMap = new HashMap<>();

 

// 配置第一个数据源

DruidDataSource dataSource1 = new DruidDataSource();

dataSource1.setDriverClassName("com.mysql.jdbc.Driver");

dataSource1.setUrl("jdbc:mysql://localhost:3306/db0");

dataSource1.setUsername("root");

dataSource1.setPassword("123456");

// 将数据库放入到数据库map集合中

dataSourceMap.put("db0", dataSource1);

 

// 配置第二个数据源

DruidDataSource dataSource2 = new DruidDataSource();

dataSource2.setDriverClassName("com.mysql.jdbc.Driver");

dataSource2.setUrl("jdbc:mysql://localhost:3306/db1");

dataSource2.setUsername("root");

dataSource2.setPassword("123456");

// 将数据库放入到map集合中

dataSourceMap.put("db1", dataSource2);

 

// 配置Order表规则

TableRuleConfiguration orderTableRuleConfig = new TableRuleConfiguration();

orderTableRuleConfig.setLogicTable("t_order");

//下面这两种是等价的,表示在两个库均匀分布

/**

 * db0

  ├── t_order_0

  └── t_order_1

db1

  ├── t_order_0

  └── t_order_1

 */

orderTableRuleConfig.setActualDataNodes("db0.t_order_0, db0.t_order_1, db1.t_order_0, db1.t_order_1");

//orderTableRuleConfig.setActualDataNodes("db${0..1}.t_order_${0..1}");

 

// 配置分库策略

orderTableRuleConfig.setDatabaseShardingStrategyConfig(

new InlineShardingStrategyConfiguration("user_id", "db${user_id % 2}"));

 

// 配置分表策略

orderTableRuleConfig.setTableShardingStrategyConfig(

new InlineShardingStrategyConfiguration("order_id", "t_order_${order_id % 2}"));

 

// 配置分片规则

ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();

shardingRuleConfig.getTableRuleConfigs().add(orderTableRuleConfig);

 

// 获取数据源对象

DataSource dataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig,

new ConcurrentHashMap(), new Properties());

return dataSource;

 

}

 

}

4.操作数据库

package com.irisian.sharedjdbc;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import javax.sql.DataSource;

public class Test {

public static void main(String[] args) throws SQLException {

DataSource dataSource = DateSourceUtils.getDataSource();

Connection conn = dataSource.getConnection();

String sql="insert into t_order(order_id,user_id) values(?,?)";

PreparedStatement prep = conn.prepareStatement(sql);

prep.setInt(1, 3);

prep.setInt(2, 1);

prep.execute();

}

}

你可能感兴趣的:(java)