【keras】Keras RetinaNet 目标检测项目实例

        今天看到了目标检测的一个github项目 Keras RetinaNet ,下面对这个项目进行总结如下:

        Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He and Piotr Dollár.

1.项目的安装

1.1 下载项目源码

1.2 确保已经安装了numpy,如未安装,则进行安装

pip install numpy --user

1.3 安装项目

 pip install . --user

        安装过程中如遇到问题,可参考:【python】Keras RetinaNet 项目安装错误:Cannot open include file: 'io.h': No such file or directory。

2.示例程序演示

        先看一下实例效果:

【keras】Keras RetinaNet 目标检测项目实例_第1张图片

        示例程序Keras RetinaNet Demo:

'''
Created on 2019年2月20日

@author: Administrator
'''
from keras_retinanet import models
from keras_retinanet.utils.image import read_image_bgr, preprocess_image, resize_image
from keras_retinanet.utils.visualization import draw_box, draw_caption
from keras_retinanet.utils.colors import label_color

# import miscellaneous modules
import matplotlib.pyplot as plt
import cv2
import numpy as np
import time

# models can be downloaded here: https://github.com/fizyr/keras-retinanet/releases
model_path = 'resnet50_coco_best_v2.1.0.h5'

# load retinanet model
model = models.load_model(model_path, backbone_name='resnet50')

# if the model is not converted to an inference model, use the line below
# see: https://github.com/fizyr/keras-retinanet#converting-a-training-model-to-inference-model
#model = models.convert_model(model)

# print(model.summary())

# load label to names mapping for visualization purposes
labels_to_names = {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}

# load image
image = read_image_bgr('E:/bird.jpg')

# copy to draw on
draw = image.copy()
draw = cv2.cvtColor(draw, cv2.COLOR_BGR2RGB)

# preprocess image for network
image = preprocess_image(image)
image, scale = resize_image(image)

# process image
start = time.time()
boxes, scores, labels = model.predict_on_batch(np.expand_dims(image, axis=0))
print("processing time: ", time.time() - start)

# correct for image scale
boxes /= scale

# visualize detections
for box, score, label in zip(boxes[0], scores[0], labels[0]):
    # scores are sorted so we can break
    if score < 0.5:
        break
        
    color = label_color(label)
    
    b = box.astype(int)
    draw_box(draw, b, color=color)
    
    caption = "{} {:.3f}".format(labels_to_names[label], score)
    draw_caption(draw, b, caption)
    
plt.figure(figsize=(15, 15))
plt.axis('off')
plt.imshow(draw)
plt.show()

        提供两种预训练好的模型下载方式:github网站下载、CSDN下载

你可能感兴趣的:(强化学习与人工智能)