- 联邦学习中客户端发送的梯度是vector而不是tensor
wzx_Eleven
联邦学习机器学习网络安全人工智能
在联邦学习中,当本地使用神经网络或深度学习模型时,训练的梯度通常是与模型参数(权重和偏置)相对应的梯度数据。具体来说,梯度的类型和形状取决于模型的结构(例如,卷积神经网络、全连接网络等),以及模型的层数、每层的神经元数量等因素。1.梯度类型:梯度是一个张量:在神经网络中,梯度通常是一个张量(tensor),每一层的梯度张量的形状和该层的权重形状相匹配。具体来说,梯度是损失函数对每个参数的偏导数,表
- 汇聚前沿|思腾合力邀您共赴可信联邦学习·武汉站
运维
可信联邦学习·武汉站于2024年11月18日-19日在武汉大学举办,其作为隐私计算与数据智能的重要力量,正引领着学术界与工业界的新一轮变革。为了推动可信联邦学习技术的深入发展,促进学术界与工业界的交流与合作,思腾合力诚挚地邀请您参加“可信联邦学习·武汉站”活动,共同探索可信联邦学习的未来之路。EventsInvitation活动邀请可信联邦学习·武汉站本次活动吸引了来自全国各大高校、研究机构及知名
- 联邦学习 Federated learning Google I/O‘19 笔记
努力搬砖的星期五
笔记联邦学习机器学习机器学习tensorflow
FederatedLearning:MachineLearningonDecentralizeddatahttps://www.youtube.com/watch?v=89BGjQYA0uE文章目录FederatedLearning:MachineLearningonDecentralizeddata1.DecentralizeddataEdgedevicesGboard:mobilekeyboa
- SAFEFL: MPC-friendly Framework for Private and Robust Federated Learning论文阅读笔记
慘綠青年627
论文阅读笔记深度学习
SAFEFL:MPC-friendlyFrameworkforPrivateandRobustFederatedLearning适用于私有和鲁棒联邦学习的MPC友好框架SAFEFL,这是一个利用安全多方计算(MPC)来评估联邦学习(FL)技术在防止隐私推断和中毒攻击方面的有效性和性能的框架。概述传统机器学习(ML):集中收集数据->隐私保护问题privacy-preservingML(PPML)采
- 探索联邦学习:保护隐私的机器学习新范式
洋葱蚯蚓
机器学习python机器学习人工智能神经网络深度学习算法
探索联邦学习:保护隐私的机器学习新范式前言联邦学习简介联邦学习的原理联邦学习的应用场景联邦学习示例代码结语前言 在数字化浪潮的推动下,我们步入了一个前所未有的数据驱动时代。海量的数据不仅为科学研究、商业决策和日常生活带来了革命性的变化,同时也带来了前所未有的挑战。尤其是数据隐私和安全问题,已经成为全球关注的焦点。 随着对个人隐私保护意识的增强,传统的集中式数据处理方式正逐渐暴露出其局限性。数据
- 网络安全: 模型的脆弱性,鲁棒性和隐私性
不当菜鸡的程序媛
学习记录web安全安全
在网络安全领域,通常描述模型安全性时,会提到以下三个特性:脆弱性(Vulnerability):指模型在某些情况下容易受到攻击或被利用的弱点。例如,模型可能对对抗性攻击或梯度泄露攻击敏感。鲁棒性(Robustness):指模型抵御攻击和在恶劣环境下保持性能的能力。提高模型的鲁棒性是增强其抵御攻击能力的关键。隐私性(Privacy):指保护模型或其训练数据免受信息泄露的能力。隐私性问题在联邦学习和其
- 实践案例|孟宪超:基于隐语深度学习在保险联合定价中的应用(附演讲视频)
隐私开源
“隐语”是开源的可信隐私计算框架,内置MPC、TEE、同态等多种密态计算虚拟设备供灵活选择,提供丰富的联邦学习算法和差分隐私机制。开源项目:https://github.com/secretflowhttps://gitee.com/secretflow演讲实录11月25日,「隐语开源社区Meetup·西安站」顺利举办,本文为大家带来的是蚂蚁集团车险精算平台技术专家孟宪超,在「隐语开源社区Meet
- 【Deep Dive:AI Webinar】联邦学习-数据安金性和隐私性分析的思维转换
开源社
人工智能
【深入探讨人工智能】网络研讨系列总共有17个视频。我们按照视频内容,大致上分成了3个大类:1.人工智能的开放、风险与挑战(4篇)2.人工智能的治理(总共12篇),其中分成了几个子类:a.人工智能的治理框架(3篇)b.人工智能的数据治理(4篇)c.人工智能的许可证(4篇)d.人工智能的法案(1篇)3.炉边对谈-谁在构建开源人工智能?今天发布的是第11个视频,亦即第二个大类别“人工智能的治理”里的第二
- Apache Pulsar 在腾讯 Angel PowerFL 联邦学习平台上的实践
StreamNative
腾讯AngelPowerFL联邦学习平台联邦学习作为新一代人工智能基础技术,通过解决数据隐私与数据孤岛问题,重塑金融、医疗、城市安防等领域。腾讯AngelPowerFL联邦学习平台构建在Angel机器学习平台上,利用Angel-PS支持万亿级模型训练的能力,将很多在Worker上的计算提升到PS(参数服务器)端;AngelPowerFL为联邦学习算法提供了计算、加密、存储、状态同步等基本操作接口,
- 联邦学习-安全树模型 SecureBoost之Desicion Tree
秃顶的码农
联邦学习-安全树模型SecureBoost之DesicionTree1联邦学习背景鉴于数据隐私的重要性,国内外对于数据的保护意识逐步加强。2018年欧盟发布了《通用数据保护条例》(GDPR),我国国家互联网信息办公室起草的《数据安全管理办法(征求意见稿)》因此数据在安全合规的前提下自由流动,成了大势所趋。这些法律法规的出台,不同程度的对人工智能传统处理数据的方式提出更多的挑战。AI高度发展的今天,
- 最新论文笔记(+21):Privacy-Preserving Byzantine-Robust Federated Learning via Blockchain Systems/ TIFS2022
cryptocxf
论文笔记联邦学习论文阅读区块链
Privacy-PreservingByzantine-RobustFederatedLearningviaBlockchainSystems可译为“利用区块链实现隐私保护的拜占庭鲁棒性联邦学习”这篇是今年八月份被TIFS2022(CCFA)收录的文章,写的利用全同态加密和区块链技术解决联邦学习中隐私问题和可信问题(虽然区块链仅仅只是存储的作用,也稍微提了一下)。精读完这篇文章,整体感觉还不错,毕
- pysyft框架中WebsocketClientWorker与WebsocketServerWorker的消息传输
一只特立独行的猫
Pysyft学习笔记pytorch
引言pysyft是基于pytorch的一个联邦学习框架(虽然用起来很难受),通过内存管理实现联邦学习的模拟。在pysyft中,WebsocketServerWorker充当数据的提供方(数据存储方),而WebsocketClientWorker作为数据的使用方(指令提供方),通过WebsocketClientWorker以TCP连接的方式向WebsocketServerWorker请求服务,从而实
- 论文解读-Agglomerative Federated Learning: Empowering Larger Model Training
MCRG
联邦学习学习笔记联邦学习云计算边缘计算机器学习分布式
联邦学习新探:端边云协同引领大模型训练的未来|INFOCOM2024联邦学习(FederatedLearning)就是一种能够在不损害用户隐私的前提下,训练人工智能模型的技术。随着云计算、边缘计算和终端设备的发展,端边云协同(End-Edge-CloudCollaboration)计算范式的出现,为联邦学习算法的实施与部署提供了新的路径。由中国科学院计算技术研究所、中国科学院大学、中关村实验室和北
- 2019年3月18日
真昼之月
醒来时状态很一般。地铁上暂时不想看书,就把灌篮高手的漫画带着翻了一阵子。今天的SQB模式也一如既往地没有出货。上午各种刷reddit摸鱼+水群,期间看群里FIFA视频时还被领导路过了电脑,不得不感叹幸好当时不是在看色图(?)因为有点困所以没下楼吃午饭直接睡觉,睡醒之后才下楼买零食充饥。下午看了会儿keras的文档,感觉还是欠缺实战,这一点还是得依赖kaggle?之后开虚拟机打算研究一下联邦学习,结
- 我的隐私计算学习——联邦学习(3)
Atara8088
学习密码学安全人工智能同态加密
本篇笔记主要是根据这位老师的知识分享整理而成【公众号:秃顶的码农】,我从他的资料里学到了很多,期间还私信询问了一些困惑,都得到了老师详细的答复,相当nice!(五)纵向联邦学习—安全树思路可以通过以下脉络学习:决策树--------->集成方法Bagging&Boosting--------->GBDT--------->XGBoost--------->SecureBoostTree这个版块的内
- 我的隐私计算学习——联邦学习(4)
Atara8088
学习密码学安全人工智能
本篇笔记部分内容来源于这位老师的知识分享【公众号:秃顶的码农】,我从他的资料里学到了很多,期间还私信询问了一些困惑,都得到了老师详细的答复,相当nice!(六)横向联邦学习—梯度更新聚合云端数据中心的分布式机器学习可以有成百上千的节点,对比横向联邦学习有一定的借鉴意义,都存在着节点更新的同步与异步的问题,节点梯度更新之后的问题、节点掉线的问题、数据的NonIID问题,但是横向联邦学习的场景更加复杂
- 我的隐私计算学习——联邦学习(5)
Atara8088
学习人工智能密码学安全
笔记内容来自多本书籍、学术资料、白皮书及ChatGPT等工具,经由自己阅读后整理而成。(七)联邦迁移学习相关研究表明,联邦迁移学习不需要主服务器作为各参与方间的协调者,旨在让模型具备举一反三能力,在各参与方样本空间以及特征空间均存在较少交叉信息的情况下,使用迁移学习算法互助地构建模型,可解决标签样本少和数据集不足的问题,例如,某国电商平台与其他国家银行间的数据迁移场景,联邦迁移学习可以很好地解决数
- 全同态加密的硬件加速:让机器学习更懂隐私保护
PrimiHub
同态加密机器学习区块链密码学可信计算技术
PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。问题:保护敏感数据企业机构间合作处理数据越来越频繁,通常使用云服务为数据共享保驾护航。保护数据隐私至关重要,特别是在处理个人可识别信息(PII)、个人健康信息(PHI)、知识产权和情报洞察等敏感数据时。数据有三种基本状态:静态、传输和使用。通常情况下,敏感数据在存储
- 2024年深圳市工业和信息化局软件产业高质量发展技术创新体系扶持计划产业链关键环节提升项目申请指南
高新技术企业认定条件
项目政策大数据
一、资助的项目类别软件企业围绕大数据、云计算、区块链、信息安全、数字孪生等软件产业重点发展方向,组织实施经济社会效益显著、主要性能指标取得突破的新产品应用推广项目。(一)大数据:重点支持数据采集、数据清洗、数据分析发掘、数据可视化、大数据行业应用、联邦学习、隐私计算等领域。(二)云计算:重点支持平台即服务(PaaS)、软件即服务(SaaS)等领域。(三)区块链:重点支持区块链底层平台建设,以及在金
- 联邦学习:密码学 + 机器学习 + 分布式 实现隐私计算,破解医学界数据孤岛的长期难题
Debroon
医学视觉#AI安全#机器学习深度学习
联邦学习:密码学+机器学习+分布式提出背景:数据不出本地,又能合力干大事联邦学习的问题联邦学习架构分布式机器学习:解决大数据量处理的问题横向联邦学习:解决跨多个数据源学习的问题纵向联邦学习:解决数据分散在多个参与者但部分特征重叠的问题联邦+迁移学习:结合联邦学习和迁移学习,不同任务间共享知识,同时保持数据隐私医疗+联邦学习:跨多个医疗机构共享模型学习,同时保护患者隐私大模型+联邦学习提出背景:数据
- 阿里巴巴开源联邦学习框架FederatedScope
魏铁锤爱摸鱼
开源
5月5日,阿里巴巴达摩院发布新型联邦学习框架FederatedScope,声称可以在不共享训练数据的情况下开发机器学习算法,从而保护隐私。,其源代码现已在Apache2.0许可下发布在GitHub上。介绍该平台被描述为一个全面的联邦学习框架,为学术界和工业界的各种机器学习任务提供灵活的定制。它还被声称易于掌握,允许用户集成自己的组件,包括特定应用程序的数据集和模型。联邦学习,顾名思义,是一种跨多个
- 联邦学习框架:FedAdapt: Adaptive Offloading for IoT Devices in Federated Learning 框架的部署实现
我要 成果
边缘计算边缘智能框架联邦学习centos通信协同推理
目录虚拟机的安装简化版(三台)环境配置安装Anaconda创建环境安装pytorch关闭防火墙代码代码下载数据集下载代码修改上传到虚拟机虚拟机测试修改虚拟机的主机名运行FedAdapt是一个全面的物联网边缘环境的框架,克服了加速联合学习资源有限的设备上的挑战,减少散兵游勇所产生的物联网设备的计算异质性和适应不同的设备和边缘服务器之间的网络带宽的影响。虚拟机的安装简化版(三台)三台centos7虚拟
- 联邦学习论文阅读:Federated collaborative filtering
thormas1996
联邦学习联邦学习论文阅读
今年一月刚挂上arXiv的一篇联邦推荐文章Federatedcollaborativefilteringforprivacy-preservingpersonalizedrecommendationsystem。摘要作者将一个隐形反馈的CF模型修改成了联邦学习的框架,隐私性用Fed-Avg算法保证。总的来说,没什么创新。问题在保护用户隐私的情况下利用隐性反馈进行推荐框架一个横向联邦的框架,和goo
- 边缘计算和联邦学习的联系
slomay
边缘计算经验分享
1.什么是边缘计算?边缘计算(EdgeComputing)是一种计算模型,其主要思想是将计算、存储和数据处理能力推送到离数据源近的边缘设备,而不是依赖于远程的云服务器。这样做的目的是减少数据传输延迟、提高响应速度,同时降低对云计算中心的依赖性。边缘计算通常在物理临近设备的位置进行数据处理,以满足实时性、安全性和隐私性的要求。例如:考虑一个城市的智能监控摄像头系统,用于监测交通、公共场所和安全状况。
- 高级分布式系统-第15讲 分布式机器学习--联邦学习
十有久诚
分布式机器学习人工智能高级分布式系统神经网络
联邦学习两种常见的架构:客户-服务器架构和对等网络架构联邦学习在传统的分布式机器学习基础上的变化。传统的分布式机器学习:在数据中心或计算集群中使用并行训练,因为有高速通信连接,所以通信开销相对很小,计算开销将会占主导地位。联邦学习:通信需要依靠互联网,甚至是无线网络,所以通信代价是占主导地位的。减少通信轮次的方法增加并行度:加入更多的参与方,让它们在通信轮次间各自独立地进行模型训练。增加每一个
- 【论文阅读】异构联邦学习综述:最新进展与研究挑战
鸿鹄一夏
论文笔记机器学习人工智能
目录前言Background什么是联邦学习什么是异构联邦学习AbstractIntroductionSurveyResearchChallenges(研究挑战)StatisticalHeterogeneity(数据异质性)ModelHeterogeneity(模型异质性)ComuunicationHeterogeneity(通信异质性)DeviceHeterogeneity(设备异质性)State
- 分裂联邦学习论文-混合联邦分裂学习GAN驱动的预测性多目标优化
梦灯
人工智能论文EdgeAI生成对抗网络人工智能机器学习
论文标题:《PredictiveGAN-PoweredMulti-ObjectiveOptimizationforHybridFederatedSplitLearning》期刊:IEEETransactionsonCommunications,2023一、论文介绍背景:联邦学习作为一种多设备协同训练的边缘智能算法,可以保护数据隐私,但增加了无线设备的计算负担。模型:为了解决上述问题,我们提出了一种
- 使用MistNet在COCO128数据集上协作训练Yolo-v5
星星失眠️
联邦学习YOLOpython人工智能
本案例介绍如何在MNIST手写数字分类场景中,使用名为MistNet的聚合算法训练联邦学习作业。数据分散在不同的地方(如边缘节点、摄像头等),由于数据隐私和带宽的原因,无法在服务器上聚合。因此,我们不能将所有数据都用于训练。在某些情况下,边缘节点的计算资源有限,甚至没有训练能力。边缘无法从训练过程中获取更新的权重。因此,传统算法(例如,联合平均算法)通常聚合由不同边缘客户端训练的更新权重,在这种情
- 迈向可持续人工智能:通过拍卖实现云边缘系统中的联邦学习需求响应
zhy2267291213
人工智能
(原文:TowardSustainableAI:FederatedLearningDemandResponseinCloud-EdgeSystemsviaAuctions)摘要:云边缘系统时紧急需求响应EDR的重要参与者,有助于维持电网稳定和供需平衡。然而,UI这用户越来越多的在云边缘系统中执行人工智能工作负载,现有的ERD管理并不是针对al工作负载而设计的,因此面临着能源消耗和al模型准确性之间
- 联邦学习的联合参与激励和网络定价设计
zhy2267291213
网络机器学习人工智能
(原文:JointParticipationIncentiveandNetworkPricingDesignforFederatedLearning)摘要:由于当大量用户通过联邦学习训练大型机器学习模型时,动态变化且通常繁重的通信开销会给网络运营商带来巨大压力。运营商可能会选择动态改变网络价格作为响应,这最终将影响服务器和用户的收益。本文考虑了参与激励(用于鼓励用户对联邦学习的贡献)和网络定价(用
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本