__declspec用于指定所给定类型的实例的与Microsoft相关的存储方式。其它的有关存储方式的修饰符如static与extern等是C和C++语言的ANSI规范,而__declspec是一种扩展属性的定义。扩展属性语法简化并标准化了C和C++语言关于Microsoft的扩展。
用法:__declspec ( extended-decl-modifier )
extended-decl-modifier参数如下,可同时出现,中间有空格隔开:
align (C++)
allocate
appdomain
deprecated (C++)
dllimport
dllexport
jitintrinsic
naked (C++)
noalias
noinline
noreturn
nothrow (C++)
novtable
process
property(C++)
restrict
selectany
thread
uuid(C++)
1.__declspec关键字应该出现在简单声明的前面。对于出现在*或&后面或者变量声明中标识符的前面的__declspec,编译器将忽略并且不给出警告。
2.要注意区分__declspec是修饰类型还是修饰变量:
__declspec(align(8)) struct Str b;修饰的是变量b。其它地方定义的struct Str类型的变量将不受__declspec(align(8))影响。
__declspec(align(8)) struct Str {};修饰的是struct Str类型。所有该类型的变量都受__declspec(align(8))影响。
align:
格式:__declspec(align(n)) declarator
其中,n是对齐参数,其有效值是2的整数次幂(从1到8192字节),如2,4,8,16,32或64。参数declarator是要设置对齐方式的数据。
1.使用__declspec(align(n))来精确控制用户自定义数据的对齐方式。你可以在定义struct,union,class或声明变量时使用__declspec(align(n))。
2.不能为函数参数使用__declspec(align(n))。
3.如果未使用__declspec(align(#)),编译器将根据数据大小按自然边界对齐。如4字节整数按4字节边界对齐;8字节double按8字节边界对齐。类或结构体中的数据,将取数据本身的自然对齐方式和#pragma pack(n)设置的对齐系数中的最小值进行对齐。
4.__declspec(align(n))和#pragma pack(n)是一对兄弟,前者规定了对齐系数的最小值,后者规定了对齐系数的最大值。
5.当两者同时出现时,前者拥有更高的优先级。即,当两者同时出现且值矛盾时,后者将不起作用。
6.当变量size大于等于#pragma pack(n)指定的n,而且__declspec(align(n))指定的数值n比对应类型长度小的时候,这个__declspec(align(n))指定将不起作用。
7.当#pragma pack(n)指定的值n大于等于所有数据成员size的时候,这个值n将不起作用。
allocate:
格式:__declspec(allocate("segname")) declarator
为数据指定存储的数据段。数据段名必须为以下列举中的一个:
code_seg
const_seg
data_seg
init_seg
section
appdomain:
指定托管程序中的每个应用程序域都要有一份指定全局变量或静态成员变量的拷贝。
deprecated:
与#pragma deprecated()的作用相同。用于指定函数的某个重载形式是不推荐的。当在程序中调用了被deprecated修饰的函数时,编译器将给出C4996警告,并且可以指定具体的警告信息。该警告信息可以来源于定义的宏。
例如:
// compile with: /W3
#define MY_TEXT "function is deprecated"
void func1(void) {}
__declspec(deprecated) void func1(int) {}
__declspec(deprecated("** this is a deprecated function **")) void func2(int) {}
__declspec(deprecated(MY_TEXT)) void func3(int) {}
int main() {
func1();
func1(1); // C4996,警告信息:warning C4996: 'func1': was declared deprecated
func2(1); // C4996,警告信息:warning C4996: 'func2': ** this is a deprecated function **
func3(1); // C4996,警告信息:warning C4996: 'func3': function is deprecated
}
dllimport,dllexport:
格式:
__declspec( dllimport ) declarator
__declspec( dllexport ) declarator
分别用来从dll导入函数,数据,或对象以及从dll中导出函数,数据,或对象。相当于定义了dll的接口,为它的客户exe或dll定义可使用的函数,数据,或对象。
将函数声明成dllexport就可以免去定义模块定义(.DEF)文件。
dllexport代替了__export关键字。
被声明为dllexport的C++函数导出时的函数名将会按照C++规则经过处理。如果要求不按照C++规则进行名字处理,请使用.def文件或使用extern "C"。
jitintrinsic:
格式:__declspec(jitintrinsic)
用于标记一个函数或元素是64位通用语言运行时(CLR)。主要用于Microsoft提供的某些库中。
使用jitintrinsic会在函数签名中加入MODOPT(IsJitIntrinsic)。
naked:
格式:__declspec(naked) declarator
此关键字仅用于x86系统,多用于虚拟设备驱动。此关键字可以使编译器在生成代码时不包含任何注释或标记。仅可以对函数的定义使用,不能用于数据声明、定义,或者函数的声明。
noalias:
仅适用于函数,它指出该函数是半纯粹的函数。半纯粹的函数是指仅引用或修改局部变量、参数和第一层间接参数。它是对编译器的一个承诺,如果该函数引用全局变量或第二层间接指针参数,则编译器会生成中断应用程序的代码。
restrict:
格式:__declspec(restrict) return_type f();
仅适用于返回指针的函数声明或定义,如,CRT的malloc函数:__declspec(restrict) void *malloc(size_t size);它告诉编译器该函数返回的指针不会与任何其它的指针混淆。它为编译器提供执行编译器优化的更多信息。对于编译器来说,最大的困难之一是确定哪些指针会与其它指针混淆,而使用这些信息对编译器很有帮助。有必要指出,这是对编译器的一个承诺,编译器并不对其进行验证。如果您的程序不恰当地使用__declspec(restrict),则该程序的行为会不正确。
noinline:
因为在类定义中定义的成员函数默认都是inline的,__declspec(naked)用于显式指定类中的某个函数不需要inline(内联)。如果一个函数很小而且对系统性能影响不大,有必要将其声明为非内敛的。例如,用于处理错误情况的函数。
noreturn:
一个函数被__declspec(noreturn)所修饰,那么它的含义是告诉编译器,这个函数不会返回,其结果是让编译器知道被修饰为__declspec(noreturn)的函数之后的代码不可到达。
如果编译器发现一个函数有无返回值的代码分支,编译器将会报C4715警告,或者C2202错误信息。如果这个代码分支是因为函数不会返回从而无法到达的话,可以使用约定__declspec(noreturn)来避免上述警告或者错误。
将一个期望返回的函数约定为__declspec(noreturn)将导致未定义的行为。
在下面的这个例子中,main函数没有从else分支返回,所以约定函数fatal为__declspec(noreturn)来避免编译或警告信息。
__declspec(noreturn) extern void fatal () {}
int main() {
if(1)
return 1;
else if(0)
return 0;
else
fatal();
}
nothrow:
格式:return-type __declspec(nothrow) [call-convention] function-name ([argument-list])
可用于函数声明。告诉编译器被声明的函数以及函数内部调用的其它函数都不会抛出异常。
novtable:
可用于任何类声明中,但最好只用于纯接口类,即类本身从不实例化。此关键字的声明将阻止编译器对构造和析构函数的vfptr的初始化。可优化编译后代码大小。
如果试图实例化一个用__declspec(novtable)声明的类然后访问类中成员,则会在运行时产生访问错误(access violation,即AV)。
process:
表示你的托管应用程序进程应该拥有一份指定全局变量,静态成员变量,或所有应用程序域共享的静态本地变量的拷贝。在使用/clr:pure进行编译时,应该使用__declspec(process),因为使用/clr:pure进行编译时,在默认情况下,每个应用程序域拥有一份全局和静态变量的拷贝。在使用/clr进行编译时,不必使用__declspec(process),因为使用/clr进行编译时,在默认情况下,每个进程有一份全局和静态变量的拷贝。
只有全局变量,静态成员变量,或本地类型的本地静态变量可以用__declspec(process)修饰。
在使用/clr:pure进行编译时,被声明为__declspec(process)的变量同时也应该声明为const类型。
如果想每个应用程序域拥有一份全局变量的拷贝时,请使用appdomain。
property:
格式:
__declspec( property( get=get_func_name ) ) declarator
__declspec( property( put=put_func_name ) ) declarator
__declspec( property( get=get_func_name, put=put_func_name ) ) declarator
该属性可用于类或结构定义中的非静态“虚数据成员”。实际上就是做了一个映射,把你的方法映射成属性,以供访问。get和put就是属性访问的权限,一个是读的权限,一个是写的权限。当编译器看到被property修饰的数据成员出现在成员选择符("." 或 "->")的右边的时候,它将把该操作转换成get或put方法。该修饰符也可用于类或结构定义中的空数组。
用法如下:
struct S {
int i;
void putprop(int j) {
i = j;
}
int getprop() {
return i;
}
__declspec(property(get = getprop, put = putprop)) int the_prop;
};
int main() {
S s;
s.the_prop = 5;
return s.the_prop;
}
selectany:
格式:__declspec(selectany) declarator
在MFC,ATL的源代码中充斥着__declspec(selectany)的声明。selectany可以让我们在.h文件中初始化一个全局变量而不是只能放在.cpp中。比如有一个类,其中有一个静态变量,那么我们可以在.h中通过类似__declspec(selectany) type class::variable = value;这样的代码来初始化这个全局变量。既是该.h被多次include,链接器也会为我们剔除多重定义的错误。对于template的编程会有很多便利。
用法如下:
__declspec(selectany) int x1=1; //正确,x1被初始化,并且对外部可见
const __declspec(selectany) int x2 =2; //错误,在C++中,默认情况下const为static;但在C中是正确的,其默认情况下const不为static
extern const __declspec(selectany) int x3=3; //正确,x3是extern const,对外部可见
extern const int x4;
const __declspec(selectany) int x4=4; //正确,x4是extern const,对外部可见
extern __declspec(selectany) int x5; //错误,x5未初始化,不能用__declspec(selectany)修饰
class X {
public:
X(int i){i++;};
int i;
};
__declspec(selectany) X x(1); //正确,全局对象的动态初始化
thread:
格式:__declspec(thread) declarator
声明declarator为线程局部变量并具有线程存储时限,以便链接器安排在创建线程时自动分配的存储。
线程局部存储(TLS)是一种机制,在多线程运行环境中,每个线程分配自己的局部数据。在标准多线程程序中,数据是在多个线程间共享的,而TLS是一种为每个线程分配自己局部数据的机制。
该属性只能用于数据或不含成员函数的类的声明和定义,不能用于函数的声明和定义。
该属性的使用可能会影响DLL的延迟载入。
该属性只能用于静态数据,包括全局数据对象(static和extern),局部静态对象,类的静态数据成员;不能用于自动数据对象。
该属性必须同时用于数据的声明和定义,不管它的声明和定义是在一个文件还是多个文件。
__declspec(thread)不能用作类型修饰符。
如果在类声明的同时没有定义对象,则__declspec(thread)将被忽略,例如:
// compile with: /LD
__declspec(thread) class X
{
public:
int I;
} x; //x是线程对象
X y; //y不是线程对象
下面两个例子从语义上来说是相同的:
__declspec(thread) class B {
public:
int data;
} BObject; //BObject是线程对象
class B2 {
public:
int data;
};
__declspec(thread) B2 BObject2; // BObject2是线程对象
uuid:
格式:__declspec( uuid("ComObjectGUID") ) declarator
将具有唯一标识符号的已注册内容声明为一个变量,可使用__uuidof()调用。
用法如下:
struct __declspec(uuid("00000000-0000-0000-c000-000000000046")) IUnknown;
struct __declspec(uuid("{00020400-0000-0000-c000-000000000046}")) IDispatch;
GNU C的一大特色(却不被初学者所知)就是__attribute__机制。__attribute__可以设置函数属性(Function Attribute)、变量属性(Variable Attribute)和类型属性(Type Attribute)。
__attribute__书写特征是:__attribute__前后都有两个下划线,并切后面会紧跟一对原括弧,括弧里面是相应的__attribute__参数。
__attribute__语法格式为:
__attribute__ ((attribute-list))
其位置约束为:
放于声明的尾部“;”之前。
函数属性(Function Attribute)
函数属性可以帮助开发者把一些特性添加到函数声明中,从而可以使编译器在错误检查方面的功能更强大。__attribute__机制也很容易同非GNU应用程序做到兼容之功效。
GNU CC需要使用 –Wall编译器来击活该功能,这是控制警告信息的一个很好的方式。下面介绍几个常见的属性参数。
__attribute__ format
该__attribute__属性可以给被声明的函数加上类似printf或者scanf的特征,它可以使编译器检查函数声明和函数实际调用参数之间的格式化字符串是否匹配。该功能十分有用,尤其是处理一些很难发现的bug。
format的语法格式为:
format (archetype, string-index, first-to-check)
format属性告诉编译器,按照printf, scanf, strftime或strfmon的参数表格式规则对该函数的参数进行检查。“archetype”指定是哪种风格;“string-index”指定传入函数的第几个参数是格式化字符串;“first-to-check”指定从函数的第几个参数开始按上述规则进行检查。
具体使用格式如下:
__attribute__((format(printf,m,n)))
__attribute__((format(scanf,m,n)))
其中参数m与n的含义为:
m:第几个参数为格式化字符串(format string);
n:参数集合中的第一个,即参数“…”里的第一个参数在函数参数总数排在第几,注意,有时函数参数里还有“隐身”的呢,后面会提到;
在使用上,__attribute__((format(printf,m,n)))是常用的,而另一种却很少见到。下面举例说明,其中myprint为自己定义的一个带有可变参数的函数,其功能类似于printf:
//m=1;n=2
extern void myprint(const char *format,...) __attribute__((format(printf,1,2)));
//m=2;n=3
extern void myprint(int l,const char *format,...) __attribute__((format(printf,2,3)));
[NextPage]
需要特别注意的是,如果myprint是一个函数的成员函数,那么m和n的值可有点“悬乎”了,例如:
//m=3;n=4
extern void myprint(int l,const char *format,...) __attribute__((format(printf,3,4)));
其原因是,类成员函数的第一个参数实际上一个“隐身”的“this”指针。(有点C 基础的都知道点this指针,不知道你在这里还知道吗?)
这里给出测试用例:attribute.c,代码如下:
1:
2:extern void myprint(const char *format,...) __attribute__((format(printf,1,2)));
3:
4:void test()
5:{
6: myprint("i=%d\n",6);
7: myprint("i=%s\n",6);
8: myprint("i=%s\n","abc");
9: myprint("%s,%d,%d\n",1,2);
10:}
运行$gcc –Wall –c attribute.c attribute后,输出结果为:
attribute.c: In function `test':
attribute.c:7: warning: format argument is not a pointer (arg 2)
attribute.c:9: warning: format argument is not a pointer (arg 2)
attribute.c:9: warning: too few arguments for format
如果在attribute.c中的函数声明去掉__attribute__((format(printf,1,2))),再重新编译,既运行$gcc –Wall –c attribute.c attribute后,则并不会输出任何警告信息。
注意,默认情况下,编译器是能识别类似printf的“标准”库函数。
__attribute__ noreturn
该属性通知编译器函数从不返回值,当遇到类似函数需要返回值而却不可能运行到返回值处就已经退出来的情况,该属性可以避免出现错误信息。C库函数中的abort()和exit()的声明格式就采用了这种格式,如下所示:
extern void exit(int) __attribute__((noreturn));
extern void abort(void) __attribute__((noreturn));
为了方便理解,大家可以参考如下的例子:
//name: noreturn.c ;测试__attribute__((noreturn))
extern void myexit();
int test(int n)
{
if ( n > 0 )
{
myexit();
/* 程序不可能到达这里*/
}
else
return 0;
}
编译显示的输出信息为:
$gcc –Wall –c noreturn.c
noreturn.c: In function `test':
noreturn.c:12: warning: control reaches end of non-void function
警告信息也很好理解,因为你定义了一个有返回值的函数test却有可能没有返回值,程序当然不知道怎么办了!
[NextPage]
加上__attribute__((noreturn))则可以很好的处理类似这种问题。把
extern void myexit();
修改为:
extern void myexit() __attribute__((noreturn));
之后,编译不会再出现警告信息。
__attribute__ const
该属性只能用于带有数值类型参数的函数上。当重复调用带有数值参数的函数时,由于返回值是相同的,所以此时编译器可以进行优化处理,除第一次需要运算外,其它只需要返回第一次的结果就可以了,进而可以提高效率。该属性主要适用于没有静态状态(static state)和副作用的一些函数,并且返回值仅仅依赖输入的参数。
为了说明问题,下面举个非常“糟糕”的例子,该例子将重复调用一个带有相同参数值的函数,具体如下:
extern int square(int n) __attribute__((const));
...
for (i = 0; i < 100; i )
{
total = square(5) i;
}
通过添加__attribute__((const))声明,编译器只调用了函数一次,以后只是直接得到了相同的一个返回值。
事实上,const参数不能用在带有指针类型参数的函数中,因为该属性不但影响函数的参数值,同样也影响到了参数指向的数据,它可能会对代码本身产生严重甚至是不可恢复的严重后果。
并且,带有该属性的函数不能有任何副作用或者是静态的状态,所以,类似getchar()或time()的函数是不适合使用该属性的。
-finstrument-functions
该参数可以使程序在编译时,在函数的入口和出口处生成instrumentation调用。恰好在函数入口之后并恰好在函数出口之前,将使用当前函数的地址和调用地址来调用下面的 profiling 函数。(在一些平台上,__builtin_return_address不能在超过当前函数范围之外正常工作,所以调用地址信息可能对profiling函数是无效的。)
void __cyg_profile_func_enter(void *this_fn, void *call_site);
void __cyg_profile_func_exit(void *this_fn, void *call_site);
其中,第一个参数this_fn是当前函数的起始地址,可在符号表中找到;第二个参数call_site是指调用处地址。
instrumentation 也可用于在其它函数中展开的内联函数。从概念上来说,profiling调用将指出在哪里进入和退出内联函数。这就意味着这种函数必须具有可寻址形式。如果函数包含内联,而所有使用到该函数的程序都要把该内联展开,这会额外地增加代码长度。如果要在C 代码中使用extern inline声明,必须提供这种函数的可寻址形式。
可对函数指定no_instrument_function属性,在这种情况下不会进行instrumentation操作。例如,可以在以下情况下使用no_instrument_function属性:上面列出的profiling函数、高优先级的中断例程以及任何不能保证profiling正常调用的函数。
no_instrument_function
如果使用了-finstrument-functions ,将在绝大多数用户编译的函数的入口和出口点调用profiling函数。使用该属性,将不进行instrument操作。
constructor/destructor
若函数被设定为constructor属性,则该函数会在main()函数执行之前被自动的执行。类似的,若函数被设定为destructor属性,则该函数会在main()函数执行之后或者exit()被调用后被自动的执行。拥有此类属性的函数经常隐式的用在程序的初始化数据方面。
这两个属性还没有在面向对象C中实现。
[NextPage]
同时使用多个属性
可以在同一个函数声明里使用多个__attribute__,并且实际应用中这种情况是十分常见的。使用方式上,你可以选择两个单独的__attribute__,或者把它们写在一起,可以参考下面的例子:
/* 把类似printf的消息传递给stderr 并退出 */
extern void die(const char *format, ...)
__attribute__((noreturn))
__attribute__((format(printf, 1, 2)));
或者写成
extern void die(const char *format, ...)
__attribute__((noreturn, format(printf, 1, 2)));
如果带有该属性的自定义函数追加到库的头文件里,那么所以调用该函数的程序都要做相应的检查。
和非GNU编译器的兼容性
庆幸的是,__attribute__设计的非常巧妙,很容易作到和其它编译器保持兼容,也就是说,如果工作在其它的非GNU编译器上,可以很容易的忽略该属性。即使__attribute__使用了多个参数,也可以很容易的使用一对圆括弧进行处理,例如:
/* 如果使用的是非GNU C, 那么就忽略__attribute__ */
#ifndef __GNUC__
# define __attribute__(x) /*NOTHING*/
#endif
需要说明的是,__attribute__适用于函数的声明而不是函数的定义。所以,当需要使用该属性的函数时,必须在同一个文件里进行声明,例如:
/* 函数声明 */
void die(const char *format, ...) __attribute__((noreturn))
__attribute__((format(printf,1,2)));
void die(const char *format, ...)
{
/* 函数定义 */
}
更多的属性含义参考:
http://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Function-Attributes.html
变量属性(Variable Attributes)
关键字__attribute__也可以对变量(variable)或结构体成员(structure field)进行属性设置。这里给出几个常用的参数的解释,更多的参数可参考本文给出的连接。
在使用__attribute__参数时,你也可以在参数的前后都加上“__”(两个下划线),例如,使用__aligned__而不是aligned,这样,你就可以在相应的头文件里使用它而不用关心头文件里是否有重名的宏定义。
[NextPage]
aligned (alignment)
该属性规定变量或结构体成员的最小的对齐格式,以字节为单位。例如:
int x __attribute__ ((aligned (16))) = 0;
编译器将以16字节(注意是字节byte不是位bit)对齐的方式分配一个变量。也可以对结构体成员变量设置该属性,例如,创建一个双字对齐的int对,可以这么写:
struct foo { int x[2] __attribute__ ((aligned (8))); };
如上所述,你可以手动指定对齐的格式,同样,你也可以使用默认的对齐方式。如果aligned后面不紧跟一个指定的数字值,那么编译器将依据你的目标机器情况使用最大最有益的对齐方式。例如:
short array[3] __attribute__ ((aligned));
选择针对目标机器最大的对齐方式,可以提高拷贝操作的效率。
aligned属性使被设置的对象占用更多的空间,相反的,使用packed可以减小对象占用的空间。
需要注意的是,attribute属性的效力与你的连接器也有关,如果你的连接器最大只支持16字节对齐,那么你此时定义32字节对齐也是无济于事的。
packed
使用该属性可以使得变量或者结构体成员使用最小的对齐方式,即对变量是一字节对齐,对域(field)是位对齐。
下面的例子中,x成员变量使用了该属性,则其值将紧放置在a的后面:
struct test
{
char a;
int x[2] __attribute__ ((packed));
};
其它可选的属性值还可以是:cleanup,common,nocommon,deprecated,mode,section,shared,tls_model,transparent_union,unused,vector_size,weak,dllimport,dlexport等,
详细信息可参考:
http://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Variable-Attributes.html#Variable-Attributes
类型属性(Type Attribute)
关键字__attribute__也可以对结构体(struct)或共用体(union)进行属性设置。大致有六个参数值可以被设定,即:aligned, packed, transparent_union, unused, deprecated 和 may_alias。
在使用__attribute__参数时,你也可以在参数的前后都加上“__”(两个下划线),例如,使用__aligned__而不是aligned,这样,你就可以在相应的头文件里使用它而不用关心头文件里是否有重名的宏定义。
aligned (alignment)
该属性设定一个指定大小的对齐格式(以字节为单位),例如:
struct S { short f[3]; } __attribute__ ((aligned (8)));
typedef int more_aligned_int __attribute__ ((aligned (8)));
[NextPage]
该声明将强制编译器确保(尽它所能)变量类型为struct S或者more-aligned-int的变量在分配空间时采用8字节对齐方式。
如上所述,你可以手动指定对齐的格式,同样,你也可以使用默认的对齐方式。如果aligned后面不紧跟一个指定的数字值,那么编译器将依据你的目标机器情况使用最大最有益的对齐方式。例如:
struct S { short f[3]; } __attribute__ ((aligned));
这里,如果sizeof(short)的大小为2(byte),那么,S的大小就为6。取一个2的次方值,使得该值大于等于6,则该值为8,所以编译器将设置S类型的对齐方式为8字节。
aligned属性使被设置的对象占用更多的空间,相反的,使用packed可以减小对象占用的空间。
需要注意的是,attribute属性的效力与你的连接器也有关,如果你的连接器最大只支持16字节对齐,那么你此时定义32字节对齐也是无济于事的。
packed
使用该属性对struct或者union类型进行定义,设定其类型的每一个变量的内存约束。当用在enum类型定义时,暗示了应该使用最小完整的类型(it indicates that the smallest integral type should be used)。
下面的例子中,my-packed-struct类型的变量数组中的值将会紧紧的靠在一起,但内部的成员变量s不会被“pack”,如果希望内部的成员变量也被packed的话,my-unpacked-struct也需要使用packed进行相应的约束。
struct my_unpacked_struct
{
char c;
int i;
};
struct my_packed_struct
{
char c;
int i;
struct my_unpacked_struct s;
}__attribute__ ((__packed__));
其它属性的含义见:
http://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Type-Attributes.html#Type-Attributes
变量属性与类型属性举例
下面的例子中使用__attribute__属性定义了一些结构体及其变量,并给出了输出结果和对结果的分析。
程序代码为:
struct p
{
int a;
char b;
char c;
}__attribute__((aligned(4))) pp;
struct q
{
int a;
char b;
struct n qn;
char c;
}__attribute__((aligned(8))) qq;
[NextPage]
int main()
{
printf("sizeof(int)=%d,sizeof(short)=%d.sizeof(char)=%d\n",sizeof(int),sizeof(short),sizeof(char));
printf("pp=%d,qq=%d \n", sizeof(pp),sizeof(qq));
return 0;
}
输出结果:
sizeof(int)=4,sizeof(short)=2.sizeof(char)=1
pp=8,qq=24
分析:
sizeof(pp):
sizeof(a) sizeof(b) sizeof(c)=4 1 1=6<23=8= sizeof(pp)
sizeof(qq):
sizeof(a) sizeof(b)=4 1=5
sizeof(qn)=8;即qn是采用8字节对齐的,所以要在a,b后面添3个空余字节,然后才能存储qn,
4 1 (3) 8 1=17
因为qq采用的对齐是8字节对齐,所以qq的大小必定是8的整数倍,即qq的大小是一个比17大又是8的倍数的一个最小值,由此得到
17<24 8=24= sizeof(qq)