celery源码分析-Task的初始化与发送任务

celery源码分析

本文环境python3.5.2,celery4.0.2,django1.10.x系列

celery的任务发送

在Django项目中使用了装饰器来包装待执行任务,

from celery import shared_task, app


@shared_task
def add(x, y):
    return x + y

@app.task(bind=True)
def debug_task(self):
    print('Request: {0!r}'.format(self.request))

此时分析一下,Task是怎样在celery中执行的。

首先,先看shared_task函数,

def shared_task(*args, **kwargs):
    """Create shared task (decorator).

    This can be used by library authors to create tasks that'll work
    for any app environment.                                                # 由shared_task装饰的任务可以被任何app调用

    Returns:
        ~celery.local.Proxy: A proxy that always takes the task from the
        current apps task registry.

    Example:

        >>> from celery import Celery, shared_task
        >>> @shared_task
        ... def add(x, y):
        ...     return x + y
        ...
        >>> app1 = Celery(broker='amqp://')
        >>> add.app is app1
        True
        >>> app2 = Celery(broker='redis://')
        >>> add.app is app2
        True                                                    
    """
    def create_shared_task(**options):

        def __inner(fun):
            name = options.get('name')                                          # 从装饰器中获取是否传入name参数
            # Set as shared task so that unfinalized apps,
            # and future apps will register a copy of this task.
            _state.connect_on_app_finalize(
                lambda app: app._task_from_fun(fun, **options)
            )                                                                   # 将该task添加到全局变量中,当其他app调用该函数时会将该任务添加到app任务列表中,以此达到所有任务共享

            # Force all finalized apps to take this task as well.
            for app in _state._get_active_apps():                               # 获取所有app的弱引用
                if app.finalized:                                               # 是否任务初始化过
                    with app._finalize_mutex:                                   # 获取线程锁
                        app._task_from_fun(fun, **options)                      # 加载该任务

            # Return a proxy that always gets the task from the current
            # apps task registry.
            def task_by_cons():
                app = _state.get_current_app()                                  # 获取当前的app
                return app.tasks[
                    name or app.gen_task_name(fun.__name__, fun.__module__)
                ]                                                               # 根据task的name或者fun来获取对应的task
            return Proxy(task_by_cons)                                          # 通过代理类实例化task_by_cons
        return __inner                                                          # 返回被__inner

    if len(args) == 1 and callable(args[0]):                                    # 如果装饰器传入参数就1个并且是可调用的,即shared_task没有传入参数
        return create_shared_task(**kwargs)(args[0])                            # 直接调用该函数并传入该函数
    return create_shared_task(*args, **kwargs)                                  # 处理shared_task中的传入参数

按照示例中的无参数调用则返回了Proxy的实例,传入参数就是task_by_cons,此时查看一下Proxy类的实现,该类位于celery/local.py中,

class Proxy(object):
    """Proxy to another object."""

    # Code stolen from werkzeug.local.Proxy.
    __slots__ = ('__local', '__args', '__kwargs', '__dict__')

    def __init__(self, local,
                 args=None, kwargs=None, name=None, __doc__=None):
        object.__setattr__(self, '_Proxy__local', local)            # 将传入参数local设置到_Proxy__local属性中
        object.__setattr__(self, '_Proxy__args', args or ())        # 设置列表属性
        object.__setattr__(self, '_Proxy__kwargs', kwargs or {})    # 设置键值属性
        if name is not None:
            object.__setattr__(self, '__custom_name__', name)       
        if __doc__ is not None:
            object.__setattr__(self, '__doc__', __doc__)
    ...
    def _get_current_object(self):
        """Get current object.

        This is useful if you want the real
        object behind the proxy at a time for performance reasons or because
        you want to pass the object into a different context.
        """
        loc = object.__getattribute__(self, '_Proxy__local')        # 获取初始化传入的local
        if not hasattr(loc, '__release_local__'):                   # 如果没有__release_local__属性
            return loc(*self.__args, **self.__kwargs)               # 函数调用,将初始化的值传入调用该函数
        try:  # pragma: no cover
            # not sure what this is about
            return getattr(loc, self.__name__)                      # 获取当前__name__属性值
        except AttributeError:  # pragma: no cover
            raise RuntimeError('no object bound to {0.__name__}'.format(self))
    ...
    def __getattr__(self, name):
        if name == '__members__':
            return dir(self._get_current_object())
        return getattr(self._get_current_object(), name)            # 获取obj的属性

    def __setitem__(self, key, value):
        self._get_current_object()[key] = value                     # 设置key val

    def __delitem__(self, key):
        del self._get_current_object()[key]                         # 删除对应key

    def __setslice__(self, i, j, seq):
        self._get_current_object()[i:j] = seq                       # 列表操作

    def __delslice__(self, i, j):
        del self._get_current_object()[i:j]

    def __setattr__(self, name, value):
        setattr(self._get_current_object(), name, value)            # 设置属性

    def __delattr__(self, name):
        delattr(self._get_current_object(), name)                   # 删除对应属性

只选取了部分属性分析如上,主要是根据传入的是否local是否是函数,或者包含release_local来判断是否是调用函数,或是获取属性来处理。

此时在初始化过程中,为每个app添加该任务时,会调用到app._task_from_fun(fun, **options),

    def _task_from_fun(self, fun, name=None, base=None, bind=False, **options):
        if not self.finalized and not self.autofinalize:
            raise RuntimeError('Contract breach: app not finalized')
        name = name or self.gen_task_name(fun.__name__, fun.__module__)         # 如果传入了名字则使用,否则就使用moudle name的形式
        base = base or self.Task                                                # 是否传入Task,否则用类自己的Task类 默认celery.app.task:Task

        if name not in self._tasks:                                             # 如果要加入的任务名称不再_tasks中
            run = fun if bind else staticmethod(fun)                            # 是否bind该方法是则直接使用该方法,否则就置为静态方法
            task = type(fun.__name__, (base,), dict({
                'app': self,                                                    # 动态创建Task类实例
                'name': name,                                                   # Task的name
                'run': run,                                                     # task的run方法
                '_decorated': True,                                             # 是否装饰
                '__doc__': fun.__doc__,
                '__module__': fun.__module__,
                '__header__': staticmethod(head_from_fun(fun, bound=bind)),
                '__wrapped__': run}, **options))()                              
            # for some reason __qualname__ cannot be set in type()
            # so we have to set it here.
            try:
                task.__qualname__ = fun.__qualname__                            
            except AttributeError:
                pass
            self._tasks[task.name] = task                                       # 将任务添加到_tasks任务中
            task.bind(self)  # connects task to this app                        # 调用task的bind方法绑定相关属性到该实例上

            autoretry_for = tuple(options.get('autoretry_for', ()))
            retry_kwargs = options.get('retry_kwargs', {})

            if autoretry_for and not hasattr(task, '_orig_run'):

                @wraps(task.run)
                def run(*args, **kwargs):
                    try:
                        return task._orig_run(*args, **kwargs)
                    except autoretry_for as exc:
                        raise task.retry(exc=exc, **retry_kwargs)

                task._orig_run, task.run = task.run, run
        else:
            task = self._tasks[name]                                            # 否则获取该task
        return task                                                             # 返回该task

其中task在默认情况下是celery.app.task:Task,在动态生成该实例后,滴啊用了task.bind(self)方法,

@classmethod
def bind(cls, app):
    was_bound, cls.__bound__ = cls.__bound__, True
    cls._app = app                                          # 设置类的_app属性
    conf = app.conf                                         # 获取app的配置信息
    cls._exec_options = None  # clear option cache

    if cls.typing is None:
        cls.typing = app.strict_typing

    for attr_name, config_name in cls.from_config:          # 设置类中的默认值
        if getattr(cls, attr_name, None) is None:           # 如果获取该属性为空
            setattr(cls, attr_name, conf[config_name])      # 使用app配置中的默认值

    # decorate with annotations from config.
    if not was_bound:
        cls.annotate()

        from celery.utils.threads import LocalStack
        cls.request_stack = LocalStack()                    # 使用线程栈保存数据

    # PeriodicTask uses this to add itself to the PeriodicTask schedule.
    cls.on_bound(app)

    return app

此时在Django项目中调用该异步任务时,如下调用,

add.delay(1,2)

此时就是通过代理类获取task的delay方法,

def delay(self, *args, **kwargs):
    """Star argument version of :meth:`apply_async`.

    Does not support the extra options enabled by :meth:`apply_async`.

    Arguments:
        *args (Any): Positional arguments passed on to the task.
        **kwargs (Any): Keyword arguments passed on to the task.
    Returns:
        celery.result.AsyncResult: Future promise.
    """
    return self.apply_async(args, kwargs)

此时直接调用了self.apply_async方法,

def apply_async(self, args=None, kwargs=None, task_id=None, producer=None,
                link=None, link_error=None, shadow=None, **options):
    """Apply tasks asynchronously by sending a message.

    Arguments:
        args (Tuple): The positional arguments to pass on to the task.

        kwargs (Dict): The keyword arguments to pass on to the task.

        countdown (float): Number of seconds into the future that the
            task should execute.  Defaults to immediate execution.

        eta (~datetime.datetime): Absolute time and date of when the task
            should be executed.  May not be specified if `countdown`
            is also supplied.

        expires (float, ~datetime.datetime): Datetime or
            seconds in the future for the task should expire.
            The task won't be executed after the expiration time.

        shadow (str): Override task name used in logs/monitoring.
            Default is retrieved from :meth:`shadow_name`.

        connection (kombu.Connection): Re-use existing broker connection
            instead of acquiring one from the connection pool.

        retry (bool): If enabled sending of the task message will be
            retried in the event of connection loss or failure.
            Default is taken from the :setting:`task_publish_retry`
            setting.  Note that you need to handle the
            producer/connection manually for this to work.

        retry_policy (Mapping): Override the retry policy used.
            See the :setting:`task_publish_retry_policy` setting.

        queue (str, kombu.Queue): The queue to route the task to.
            This must be a key present in :setting:`task_queues`, or
            :setting:`task_create_missing_queues` must be
            enabled.  See :ref:`guide-routing` for more
            information.

        exchange (str, kombu.Exchange): Named custom exchange to send the
            task to.  Usually not used in combination with the ``queue``
            argument.

        routing_key (str): Custom routing key used to route the task to a
            worker server.  If in combination with a ``queue`` argument
            only used to specify custom routing keys to topic exchanges.

        priority (int): The task priority, a number between 0 and 9.
            Defaults to the :attr:`priority` attribute.

        serializer (str): Serialization method to use.
            Can be `pickle`, `json`, `yaml`, `msgpack` or any custom
            serialization method that's been registered
            with :mod:`kombu.serialization.registry`.
            Defaults to the :attr:`serializer` attribute.

        compression (str): Optional compression method
            to use.  Can be one of ``zlib``, ``bzip2``,
            or any custom compression methods registered with
            :func:`kombu.compression.register`.
            Defaults to the :setting:`task_compression` setting.

        link (~@Signature): A single, or a list of tasks signatures
            to apply if the task returns successfully.

        link_error (~@Signature): A single, or a list of task signatures
            to apply if an error occurs while executing the task.

        producer (kombu.Producer): custom producer to use when publishing
            the task.

        add_to_parent (bool): If set to True (default) and the task
            is applied while executing another task, then the result
            will be appended to the parent tasks ``request.children``
            attribute.  Trailing can also be disabled by default using the
            :attr:`trail` attribute

        publisher (kombu.Producer): Deprecated alias to ``producer``.

        headers (Dict): Message headers to be included in the message.

    Returns:
        ~@AsyncResult: Promise of future evaluation.

    Raises:
        TypeError: If not enough arguments are passed, or too many
            arguments are passed.  Note that signature checks may
            be disabled by specifying ``@task(typing=False)``.
        kombu.exceptions.OperationalError: If a connection to the
           transport cannot be made, or if the connection is lost.

    Note:
        Also supports all keyword arguments supported by
        :meth:`kombu.Producer.publish`.
    """
    if self.typing:
        try:
            check_arguments = self.__header__                   # 获取参数
        except AttributeError:  # pragma: no cover
            pass
        else:
            check_arguments(*(args or ()), **(kwargs or {}))

    app = self._get_app()                                       # 获取当前app                         
    if app.conf.task_always_eager:                              # 如果该配置为true
        return self.apply(args, kwargs, task_id=task_id or uuid(), 
                          link=link, link_error=link_error, **options)  # 本地执行该任务并返回结果
    # add 'self' if this is a "task_method".
    if self.__self__ is not None:
        args = args if isinstance(args, tuple) else tuple(args or ())
        args = (self.__self__,) + args
        shadow = shadow or self.shadow_name(args, kwargs, options)

    preopts = self._get_exec_options()                                  # 获取队列等信息
    options = dict(preopts, **options) if options else preopts          # 设置成字典类型
    return app.send_task(
        self.name, args, kwargs, task_id=task_id, producer=producer,
        link=link, link_error=link_error, result_cls=self.AsyncResult,
        shadow=shadow, task_type=self,
        **options
    )                                                                   # 调用app发送send_task

该方法比较复杂,主要是进行了组装待发送任务的任务的参数,如connection,queue,exchange,routing_key等,如果是配置了本地直接执行则本地执行直接返回结果,否则调用app实例的send_task发送任务。

def send_task(self, name, args=None, kwargs=None, countdown=None,
              eta=None, task_id=None, producer=None, connection=None,
              router=None, result_cls=None, expires=None,
              publisher=None, link=None, link_error=None,
              add_to_parent=True, group_id=None, retries=0, chord=None,
              reply_to=None, time_limit=None, soft_time_limit=None,
              root_id=None, parent_id=None, route_name=None,
              shadow=None, chain=None, task_type=None, **options):
    """Send task by name.

    Supports the same arguments as :meth:`@-Task.apply_async`.

    Arguments:
        name (str): Name of task to call (e.g., `"tasks.add"`).
        result_cls (~@AsyncResult): Specify custom result class.
    """
    parent = have_parent = None
    amqp = self.amqp                                                    # 获取amqp实例
    task_id = task_id or uuid()                                         # 设置任务id,如果没有传入则生成任务id
    producer = producer or publisher  # XXX compat                      # 生成这
    router = router or amqp.router                                      # 路由值,如果没有则使用amqp的router
    conf = self.conf                                                    # 获取配置信息
    if conf.task_always_eager:  # pragma: no cover                      # 如果配置了本地执行则打印信息
        warnings.warn(AlwaysEagerIgnored(
            'task_always_eager has no effect on send_task',
        ), stacklevel=2)
    options = router.route(
        options, route_name or name, args, kwargs, task_type)           # 生成route信息

    if not root_id or not parent_id:
        parent = self.current_worker_task 
        if parent:
            if not root_id:
                root_id = parent.request.root_id or parent.request.id
            if not parent_id:
                parent_id = parent.request.id

    message = amqp.create_task_message(
        task_id, name, args, kwargs, countdown, eta, group_id,
        expires, retries, chord,
        maybe_list(link), maybe_list(link_error),
        reply_to or self.oid, time_limit, soft_time_limit,
        self.conf.task_send_sent_event,
        root_id, parent_id, shadow, chain,
    )                                                                   # 生成任务信息

    if connection:
        producer = amqp.Producer(connection)                            # 如果有连接则生成生产者
    with self.producer_or_acquire(producer) as P:                       
        with P.connection._reraise_as_library_errors():
            self.backend.on_task_call(P, task_id)
            amqp.send_task_message(P, name, message, **options)         # 发送任务消息 
    result = (result_cls or self.AsyncResult)(task_id)                  # 生成异步任务实例
    if add_to_parent:
        if not have_parent:
            parent, have_parent = self.current_worker_task, True
        if parent:
            parent.add_trail(result)
    return result                                                       # 返回结果

至此一个任务就发送出去,等待着消费者消费掉任务。

worker消费task的概述

在分析celery的worker的启动过程中,最后开启了loop等待任务来消费,启动定义的回调函数就是on_task_received,

    def on_task_received(message):
        # payload will only be set for v1 protocol, since v2
        # will defer deserializing the message body to the pool.
        payload = None
        try:
            type_ = message.headers['task']                # protocol v2        # 获取任务
        except TypeError:
            return on_unknown_message(None, message)                            # 如果解析失败
        except KeyError:
            try:
                payload = message.decode()                                      # 再次解析消息
            except Exception as exc:  # pylint: disable=broad-except
                return self.on_decode_error(message, exc)
            try:
                type_, payload = payload['task'], payload  # protocol v1        # 利用协议解析任务
            except (TypeError, KeyError):
                return on_unknown_message(payload, message)
        try:
            strategy = strategies[type_]                                        # 获取type_的对应stratepy
        except KeyError as exc:
            return on_unknown_task(None, message, exc)
        else:
            try:
                strategy(
                    message, payload,
                    promise(call_soon, (message.ack_log_error,)),
                    promise(call_soon, (message.reject_log_error,)),
                    callbacks,
                )                                                               # 处理获取的信息内容
            except InvalidTaskError as exc:
                return on_invalid_task(payload, message, exc)

至此,从Django应用客户端发送的消息就到达了启动的worker的进程并被消费掉。
大概的消费流程如下,
此时的strategies就是在consumer的task实例在启动start时,调用的update_strategies方法,

  def update_strategies(self):
        loader = self.app.loader                                                # app的加载器
        for name, task in items(self.app.tasks):                                # 遍历所有的任务
            self.strategies[name] = task.start_strategy(self.app, self)         # 将task的name设为key 将task调用的返回值作为key
            task.__trace__ = build_tracer(name, task, loader, self.hostname,
                                          app=self.app)                         # 处理相关执行结果的函数

此时我们继续查看task.start_strategy函数,

def start_strategy(self, app, consumer, **kwargs):
    return instantiate(self.Strategy, self, app, consumer, **kwargs)    # 生成task实例

此时self.Strategy的默认值是celery.worker.strategy:default,

def default(task, app, consumer,
        info=logger.info, error=logger.error, task_reserved=task_reserved,
        to_system_tz=timezone.to_system, bytes=bytes, buffer_t=buffer_t,
        proto1_to_proto2=proto1_to_proto2):
    """Default task execution strategy.

    Note:
        Strategies are here as an optimization, so sadly
        it's not very easy to override.
    """
    hostname = consumer.hostname                                                    # 设置相关的消费者信息
    connection_errors = consumer.connection_errors                                  # 设置错误值
    _does_info = logger.isEnabledFor(logging.INFO)

    # task event related
    # (optimized to avoid calling request.send_event)
    eventer = consumer.event_dispatcher                                             
    events = eventer and eventer.enabled
    send_event = eventer.send
    task_sends_events = events and task.send_events

    call_at = consumer.timer.call_at
    apply_eta_task = consumer.apply_eta_task
    rate_limits_enabled = not consumer.disable_rate_limits
    get_bucket = consumer.task_buckets.__getitem__
    handle = consumer.on_task_request
    limit_task = consumer._limit_task
    body_can_be_buffer = consumer.pool.body_can_be_buffer
    Req = create_request_cls(Request, task, consumer.pool, hostname, eventer)       # 返回一个请求类

    revoked_tasks = consumer.controller.state.revoked

    def task_message_handler(message, body, ack, reject, callbacks,
                             to_timestamp=to_timestamp):
        if body is None:
            body, headers, decoded, utc = (
                message.body, message.headers, False, True,
            )
            if not body_can_be_buffer:
                body = bytes(body) if isinstance(body, buffer_t) else body
        else:
            body, headers, decoded, utc = proto1_to_proto2(message, body)           # 解析接受的数据

        req = Req(
            message,
            on_ack=ack, on_reject=reject, app=app, hostname=hostname,
            eventer=eventer, task=task, connection_errors=connection_errors,
            body=body, headers=headers, decoded=decoded, utc=utc,
        )                                                                           # 实例化请求
        if _does_info:
            info('Received task: %s', req)
        if (req.expires or req.id in revoked_tasks) and req.revoked():
            return

        if task_sends_events:
            send_event(
                'task-received',
                uuid=req.id, name=req.name,
                args=req.argsrepr, kwargs=req.kwargsrepr,
                root_id=req.root_id, parent_id=req.parent_id,
                retries=req.request_dict.get('retries', 0),
                eta=req.eta and req.eta.isoformat(),
                expires=req.expires and req.expires.isoformat(),
            )                                                                       # 如果需要发送接受请求则发送

        if req.eta:                                                                 # 时间相关处理
            try:
                if req.utc:
                    eta = to_timestamp(to_system_tz(req.eta))
                else:
                    eta = to_timestamp(req.eta, timezone.local)
            except (OverflowError, ValueError) as exc:
                error("Couldn't convert ETA %r to timestamp: %r. Task: %r",
                      req.eta, exc, req.info(safe=True), exc_info=True)
                req.reject(requeue=False)
            else:
                consumer.qos.increment_eventually()
                call_at(eta, apply_eta_task, (req,), priority=6)
        else:
            if rate_limits_enabled:                                                 # 速率限制
                bucket = get_bucket(task.name)
                if bucket:
                    return limit_task(req, bucket, 1)
            task_reserved(req)                                                      # 
            if callbacks:
                [callback(req) for callback in callbacks] 
            handle(req)                                                             # 处理接受的请求

    return task_message_handler

此时处理的handler就是在consumer初始化的时候传入的w.process_task,

def _process_task(self, req):
    """Process task by sending it to the pool of workers."""
    try:
        req.execute_using_pool(self.pool)
    except TaskRevokedError:
        try:
            self._quick_release()   # Issue 877
        except AttributeError:
            pass

接着就会调用,req.execute_using_pool来执行该任务,该request位于create_request_cls中的Request类的方法,

class Request(base):

    def execute_using_pool(self, pool, **kwargs):
        task_id = self.id                                                       # 获取任务id
        if (self.expires or task_id in revoked_tasks) and self.revoked():       # 检查是否过期或者是否已经执行过
            raise TaskRevokedError(task_id)

        time_limit, soft_time_limit = self.time_limits                          # 获取时间
        result = apply_async(                                                   # 执行对应的func并返回结果
            trace,
            args=(self.type, task_id, self.request_dict, self.body,
                  self.content_type, self.content_encoding),
            accept_callback=self.on_accepted,
            timeout_callback=self.on_timeout,
            callback=self.on_success,
            error_callback=self.on_failure,
            soft_timeout=soft_time_limit or default_soft_time_limit,
            timeout=time_limit or default_time_limit,
            correlation_id=task_id,
        )
        # cannot create weakref to None
        # pylint: disable=attribute-defined-outside-init
        self._apply_result = maybe(ref, result)
        return result

此时调用的apply_async其实就是pool.apply_async的方法,传入的执行方法就是trace_task_ret,

def trace_task(task, uuid, args, kwargs, request={}, **opts):
    """Trace task execution."""
    try:
        if task.__trace__ is None:
            task.__trace__ = build_tracer(task.name, task, **opts)
        return task.__trace__(uuid, args, kwargs, request)                  # 调用在strategy更新时写入的方法
    except Exception as exc:
        return trace_ok_t(report_internal_error(task, exc), None, 0.0, None)


def _trace_task_ret(name, uuid, request, body, content_type,
                    content_encoding, loads=loads_message, app=None,
                    **extra_request):
    app = app or current_app._get_current_object()                          # 获取app
    embed = None
    if content_type:
        accept = prepare_accept_content(app.conf.accept_content)
        args, kwargs, embed = loads(
            body, content_type, content_encoding, accept=accept,
        )
    else:
        args, kwargs, embed = body
    hostname = gethostname()
    request.update({
        'args': args, 'kwargs': kwargs,
        'hostname': hostname, 'is_eager': False,
    }, **embed or {})
    R, I, T, Rstr = trace_task(app.tasks[name],
                               uuid, args, kwargs, request, app=app)        # 调用trace_task执行task
    return (1, R, T) if I else (0, Rstr, T)
trace_task_ret = _trace_task_ret

在update_stragegy时传入的方法是,

task.__trace__ = build_tracer(name, task, loader, self.hostname,
                                          app=self.app) 

build_tracer函数的部分解析是,

def build_tracer(name, task, loader=None, hostname=None, store_errors=True,
                 Info=TraceInfo, eager=False, propagate=False, app=None,
                 monotonic=monotonic, truncate=truncate,
                 trace_ok_t=trace_ok_t, IGNORE_STATES=IGNORE_STATES):
    fun = task if task_has_custom(task, '__call__') else task.run   # 获取task对应的run函数

    ...
    def trace_task(uuid, args, kwargs, request=None):
        # R      - is the possibly prepared return value.
        # I      - is the Info object.
        # T      - runtime
        # Rstr   - textual representation of return value
        # retval - is the always unmodified return value.
        # state  - is the resulting task state.

        # This function is very long because we've unrolled all the calls
        # for performance reasons, and because the function is so long
        # we want the main variables (I, and R) to stand out visually from the
        # the rest of the variables, so breaking PEP8 is worth it ;)
        R = I = T = Rstr = retval = state = None
        task_request = None
        time_start = monotonic()
        ...
        # -*- TRACE -*-
            try:
                R = retval = fun(*args, **kwargs) # 执行对应的函数
                state = SUCCESS
            except Reject as exc:
                    ...
    return trace_task

此时调用的fun函数就是task本来应该执行的函数,此时就执行了对应task并获得了函数执行的返回结果。
至此,一个简单的消息的发送和消费的过程就完成了。

本文总结

主要是讲述了一个task任务从客户端的发送过程,然后服务端获得任务后并消费掉该任务,从而完成任务的消费,虽然本文的分析略显粗略,只是大致描述了任务的发送和消费,其中很多细节没有一一分析,大家如有兴趣可自行分析。

你可能感兴趣的:(web)