感知机是由美国学者FrankRosenblatt在1957年提出来的。感知机是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想。
感知机接收多个输入信号,输出一个信号。这里所说的“信号”可以想象成电流或河流那样具备“流动性”的东西。像电流流过导线,向前方输送电子一样,感知机的信号也会形成流,向前方输送信息。但是,和实际的电流不同的是,感知机的信号只有“流/不流”(1/0)两种取值。这里我们认为0对应“不传递信号”, 1对应“传递信号”。
下图1就是一个接收两个输入信号的感知机的例子。
知道了上面那些概念,那如何用感知机来解决简单的问题呢?这里首先以逻辑电路为题材来思考一下与门(AND gate)。与门是有两个输入和一个输出的门电路。下图这种输入信号和输出信号的对应表称为“真值表”。如图所示,与门仅在两个输入均为1时输出1,其他时候则输出0。
接着,我们再来考虑一下与非门(NAND gate)。NAND是Not AND的意思,与非门就是颠倒了与门的输出。用真值表表示的话,如下图所示,仅当x1和x2同时为1时输出0,其他时候则输出1。?
我们用Python来实现刚才的逻辑电路。这里,先定义一个接收参数x1和x2的AND函数。
def AND(x1, x2):
w1, w2, theta = 0.5, 0.5, 0.7
tmp = x1*w1 + x2*w2
if tmp <= theta:
return 0
elif tmp > theta:
return 1
在函数内初始化参数w1、 w2、 theta,当输入的加权总和超过阈值时返回1,否则返回0。我们来确认一下输出结果是否如图2 与门真值表所示。
AND(0, 0) # 输出0
AND(1, 0) # 输出0
AND(0, 1) # 输出0
AND(1, 1) # 输出1
和我们预想的输出一样,这样我们就实现了与门。按照同样的步骤,也可以实现与非门和或门。
下面让我们来对上面的简单感知机的实现稍作修改。刚才与门的实现比较直接、容易理解,但是考虑到以后的事情,我们将其修改为另外一种实现形式。在此之前,首先把式子(1)的θ换成−b,于是就可以用式(2)来表示感知机的行为了。
式(1)和式(2)虽然有一个符号不同,但表达的内容是完全相同的。此处, b称为偏置, w1和w2称为权重。如式(2)所示,感知机会计算输入信号和权重的乘积,然后加上偏置,如果这个值大于0则输出1,否则输出0。下面,我们使用NumPy,按式(2)的方式实现感知机。在这个过程中,我们用Python的解释器逐一确认结果。
>>> import numpy as np
>>> x = np.array([0, 1]) # 输入
>>> w = np.array([0.5, 0.5]) # 权重
>>> b = -0.7 # 偏置
>>> w*x
array([ 0. , 0.5])
>>> np.sum(w*x)
0.5
>>> np.sum(w*x) + b
-0.19999999999999996 # 大约为-0.2(由浮点小数造成的运算误差)
如上例所示,在NumPy数组的乘法运算中,当两个数组的元素个数相同时,各个元素分别相乘,因此w*x的结果就是它们的各个元素分别相乘([0, 1] [0.5, 0.5] => [0, 0.5])。之后, np.sum(wx)再计算相乘后的各个元素的总和。最后再把偏置加到这个加权总和上,就完成了式(2)的计算。
使用权重和偏置,可以像下面这样实现与门。
def AND(x1, x2):
x = np.array([x1, x2])
w = np.array([0.5, 0.5])
b = -0.7
tmp = np.sum(w*x) + b
if tmp <= 0:
return 0
else:
return 1
这里把−θ命名为偏置b,但是请注意,偏置和权重w1、 w2的作用是不一样的。具体地说, w1和w2是控制输入信号的重要性的参数,而偏置是调整神经元被激活的容易程度(输出信号为1的程度)的参数。比如,若b为−0.1,则只要输入信号的加权总和超过0.1,神经元就会被激活。但是如果b为−20.0,则输入信号的加权总和必须超过20.0,神经元才会被激活。像这样,偏置的值决定了神经元被激活的容易程度。另外,这里我们将w1和w2称为权重,将b称为偏置,但是根据上下文,有时也会将b、 w1、 w2这些参数统称为权重。(实际上,在式(2) 的b + w1x1 + w2x2的计算中,当输入x1和x2为0时,只输出偏置的值。)
接着,我们继续实现与非门和或门。
def NAND(x1, x2):
x = np.array([x1, x2])
w = np.array([-0.5, -0.5]) # 仅权重和偏置与AND不同!
b = 0.7
tmp = np.sum(w*x) + b
if tmp <= 0:
return 0
else:
return 1
def OR(x1, x2):
x = np.array([x1, x2])
w = np.array([0.5, 0.5]) # 仅权重和偏置与AND不同!
b = -0.2
tmp = np.sum(w*x) + b
if tmp <= 0:
return 0
else:
return 1
我们在前面已经介绍过,与门、与非门、或门是具有相同构造的感知机,区别只在于权重参数的值。因此,在与非门和或门的实现中,仅设置权重和偏置的值这一点和与门的实现不同。
到这里我们已经知道了,使用感知机可以实现与门、与非门、或门三种逻辑电路。但现在我们来考虑一下异或门(XOR gate)吧。
异或门也被称为逻辑异或电路。如图2-5所示,仅当x1或x2中的一方为1时,才会输出1(“异或”是拒绝其他的意思)。那么,要用感知机实现这个异或门的话,应该怎么设定权重参数呢?
图7中的○和△无法用一条直线分开,但是如果将“直线”这个限制条件去掉,就可以实现了。比如,我们可以像图8那样,作出分开○和△的空间。
的确,感知机不能表示异或门,但也不用太失望,因为感知机还可以有“叠加层”(即可以通过叠加层来表示异或门)。这就是多层感知机,不过这个我们以后再继续做详细介绍了。
参考文献: 深度学习入门:基于Python的理论与实现Deep Learning from Scratch