Codeforces 593B Anton and Lines 【思维】【枚举】【排序】

Description

The teacher gave Anton a large geometry homework, but he didn’t do it (as usual) as he participated in a regular round on Codeforces. In the task he was given a set of n lines defined by the equations y = ki·x + bi. It was necessary to determine whether there is at least one point of intersection of two of these lines, that lays strictly inside the strip between x1 < x2. In other words, is it true that there are 1 ≤ i < j ≤ n and x’, y’, such that:
y’ = ki * x’ + bi, that is, point (x’, y’) belongs to the line number i;
y’ = kj * x’ + bj, that is, point (x’, y’) belongs to the line number j;
x1 < x’ < x2, that is, point (x’, y’) lies inside the strip bounded by x1 < x2.
You can’t leave Anton in trouble, can you? Write a program that solves the given task.

Input

The first line of the input contains an integer n (2 ≤ n ≤ 100 000) — the number of lines in the task given to Anton. The second line contains integers x1 and x2 ( - 1 000 000 ≤ x1 < x2 ≤ 1 000 000) defining the strip inside which you need to find a point of intersection of at least two lines.
The following n lines contain integers ki, bi ( - 1 000 000 ≤ ki, bi ≤ 1 000 000) — the descriptions of the lines. It is guaranteed that all lines are pairwise distinct, that is, for any two i ≠ j it is true that either ki ≠ kj, or bi ≠ bj.

Output

Print “Yes” (without quotes), if there is at least one intersection of two distinct lines, located strictly inside the strip. Otherwise print “No” (without quotes).

Example

Input

4
1 2
1 2
1 0
0 1
0 2

Output

NO

Input

2
1 3
1 0
-1 3

Output

YES

Input

2
1 3
1 0
0 2

Output

YES

Input

2
1 3
1 0
0 3

Output

NO

Note

In the first sample there are intersections located on the border of the strip, but there are no intersections located strictly inside it.
Codeforces 593B Anton and Lines 【思维】【枚举】【排序】_第1张图片

题意:

给你n条直线,问你在[x1, x2]的开区间里面存不存在至少一个交点。

思路:

根据直线的k 和 b求出与x = x1 和 x = x2的交点坐标,分别用b[].y1和b[].y2来记录。
这样只要存在i和j(i != j)满足b[i].y1 > b[j].y1 && b[i].y2 < b[j].y2就可以判定存在交点。(也就是假设有两条直线L1, L2,那么它们在一个区间内相交的条件就是,在区间左侧L1在L2上面,右侧L1在L2下面)
关键在于如何高效的查找。我们可以先按y1升序排列,再按y2升序排列,然后依次比较。
分析比较过程:(数组下标从1-n)首先取一个k = 1,然后遍历i(2 <= i <= n).
我们来比较b[k]和b[i]的y1, y2
(1) 满足上面的判定条件,存在交点;
(2) 剩下的情况,为了最大概率找到交点,我们取y2值较小的代替k向下比较,这样k = i;
这样查询只需要O(n)的时间复杂度。

注意:lv和rv会超int

ac代码:

#include 
using namespace std;
typedef long long ll;
struct xx {
    ll y1, y2;
}b[100005];     //直线与两边界的交点纵坐标

ll a[100005][2];//直线的两个参数
ll f(int i, ll x) {
    return a[i][0] * x + a[i][1];
}
bool cmp(xx a, xx b)
{
    if(a.y1 != b.y1)
        return a.y1 > b.y1;
    else
        return a.y2 > b.y2;
}
int main()
{
    int n; cin >> n;
    ll x1, x2;
    cin >> x1 >> x2;
    for (int i = 0; i < n; ++i)
    {
        cin >> a[i][0] >> a[i][1];
        b[i].y1 = f(i, x1);
        b[i].y2 = f(i, x2);
    }
    sort(b, b+n, cmp);
    int flag = 0;
    for (int i = 0, j = 1; i < n && j < n; ++j)
    {
        if(b[i].y1 > b[j].y1 && b[i].y2 < b[j].y2 && i!=j)
        {
            flag = 1;
            break;
        }
        else
            i = j;
    }
    if(flag)
        printf("YES\n");
    else
        printf("NO\n");
}

你可能感兴趣的:(排序,枚举暴力)