LaTeX \LaTeX LATEX的数学公式有两种:行中公式和独立公式(行间公式)。行中公式放在文中与其它文字混编,独立公式单独成行。
行中公式可以用如下方法表示:
$ 数学公式 $
独立公式可以用如下方法表示:
$$ 数学公式 $$
\vee,\bigvee,\wedge,\bigwedge
∨ , ⋁ , ∧ , ⋀ \vee,\bigvee,\wedge,\bigwedge ∨,⋁,∧,⋀
\mathop{\mathbb{E}}\limits_{S\sim\mathcal{D}^m}[\widehat{R}_{LOO}(\mathcal{A})]=\mathop{\mathbb{E}}\limits_{S^\prime\sim\mathcal{m-1}}[R(h_{S^\prime})]
E S ∼ D m [ R ^ L O O ( A ) ] = E S ′ ∼ m − 1 [ R ( h S ′ ) ] \mathop{\mathbb{E}}\limits_{S\sim\mathcal{D}^m}[\widehat{R}_{LOO}(\mathcal{A})]=\mathop{\mathbb{E}}\limits_{S^\prime\sim\mathcal{m-1}}[R(h_{S^\prime})] S∼DmE[R LOO(A)]=S′∼m−1E[R(hS′)]
伪逆矩阵的数学记号:\dagger
M † \mathbf M^\dagger M†
\dot{a}, \ddot{a}, \acute{a}, \grave{a}
a ˙ , a ¨ , a ˊ , a ˋ \dot{a}, \ddot{a}, \acute{a}, \grave{a} a˙,a¨,aˊ,aˋ
\check{a}, \breve{a}, \tilde{a}, \bar{a}
a ˇ , a ˘ , a ~ , a ˉ \check{a}, \breve{a}, \tilde{a}, \bar{a} aˇ,a˘,a~,aˉ
\hat{a}, \widehat{a}, \vec{a}
a ^ , a ^ , a ⃗ \hat{a}, \widehat{a}, \vec{a} a^,a ,a
\exp_a b = a^b, \exp b = e^b, 10^m
exp a b = a b , exp b = e b , 1 0 m \exp_a b = a^b, \exp b = e^b, 10^m expab=ab,expb=eb,10m
\ln c, \lg d = \log e, \log_{10} f
ln c , lg d = log e , log 10 f \ln c, \lg d = \log e, \log_{10} f lnc,lgd=loge,log10f
\sin a, \cos b, \tan c, \cot d, \sec e, \csc f
sin a , cos b , tan c , cot d , sec e , csc f \sin a, \cos b, \tan c, \cot d, \sec e, \csc f sina,cosb,tanc,cotd,sece,cscf
\arcsin a, \arccos b, \arctan c
arcsin a , arccos b , arctan c \arcsin a, \arccos b, \arctan c arcsina,arccosb,arctanc
\sinh a, \cosh b, \tanh c, \coth d
sinh a , cosh b , tanh c , coth d \sinh a, \cosh b, \tanh c, \coth d sinha,coshb,tanhc,cothd
\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n
sh k , ch l , th m , coth n \operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n shk,chl,thm,cothn
\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q
argsh o , argch p , argth q \operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q argsho,argchp,argthq
\left\vert s \right\vert
∣ s ∣ \left\vert s \right\vert ∣s∣
\min(x,y), \max(x,y)
min ( x , y ) , max ( x , y ) \min(x,y), \max(x,y) min(x,y),max(x,y)
\min x, \max y, \inf s, \sup t
min x , max y , inf s , sup t \min x, \max y, \inf s, \sup t minx,maxy,infs,supt
\lim_{x \to \infty} \frac{1}{n(n+1)}
lim x → ∞ 1 n ( n + 1 ) \lim_{x \to \infty} \frac{1}{n(n+1)} limx→∞n(n+1)1
\Pr j, \hom l, \lVert z \rVert, \arg z
Pr j , hom l , ∥ z ∥ , arg z \Pr j, \hom l, \lVert z \rVert, \arg z Prj,homl,∥z∥,argz
dt, \mathrm{d}t, \partial t, \nabla\psi
d t , d t , ∂ t , ∇ ψ dt, \mathrm{d}t, \partial t, \nabla\psi dt,dt,∂t,∇ψ
dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2}{\partial x_1\partial x_2}y
d y / d x , d y / d x , d y d x , d y d x , ∂ 2 ∂ x 1 ∂ x 2 y dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2}{\partial x_1\partial x_2}y dy/dx,dy/dx,dxdy,dxdy,∂x1∂x2∂2y
\prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y
′ , ‵ , f ′ , f ′ , f ′ ′ , f ( 3 ) , y ˙ , y ¨ \prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y ′,‵,f′,f′,f′′,f(3),y˙,y¨
\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar
∞ , ℵ , ∁ , ∍ , ð , Ⅎ , ℏ \infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar ∞,ℵ,∁,∍,ð,Ⅎ,ℏ
\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS
ℑ , ı , ȷ , k , ℓ , ℧ , ℘ , ℜ , Ⓢ \Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS ℑ,ı,ȷ,k,ℓ,℧,℘,ℜ,Ⓢ
s_k \equiv 0 \pmod{m}
s k ≡ 0 ( m o d m ) s_k \equiv 0 \pmod{m} sk≡0(modm)
a \bmod b
a m o d b a \bmod b amodb
\mid, \nmid, \shortmid, \nshortmid
∣ , ∤ , ∣ , ∤ \mid, \nmid, \shortmid, \nshortmid ∣,∤,∣,
\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}}
√ , 2 , n , x 3 + y 3 2 3 \surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}} √,2,n,32x3+y3
+, -, \pm, \mp, \dotplus
+ , − , ± , ∓ , ∔ +, -, \pm, \mp, \dotplus +,−,±,∓,∔
\times, \div, \divideontimes, /, \backslash
× , ÷ , ⋇ , / , \ \times, \div, \divideontimes, /, \backslash ×,÷,⋇,/,\
\cdot, * \ast, \star, \circ, \bullet
⋅ , ∗ ∗ , ⋆ , ∘ , ∙ \cdot, * \ast, \star, \circ, \bullet ⋅,∗∗,⋆,∘,∙
\boxplus, \boxminus, \boxtimes, \boxdot
⊞ , ⊟ , ⊠ , ⊡ \boxplus, \boxminus, \boxtimes, \boxdot ⊞,⊟,⊠,⊡
\oplus, \ominus, \otimes, \oslash, \odot
⊕ , ⊖ , ⊗ , ⊘ , ⊙ \oplus, \ominus, \otimes, \oslash, \odot ⊕,⊖,⊗,⊘,⊙
\circleddash, \circledcirc, \circledast
⊝ , ⊚ , ⊛ \circleddash, \circledcirc, \circledast ⊝,⊚,⊛
\bigoplus, \bigotimes, \bigodot
⨁ , ⨂ , ⨀ \bigoplus, \bigotimes, \bigodot ⨁,⨂,⨀
\{ \}, \varnothing
{ } , ∅ \{ \}, \varnothing {},∅
\in, \notin \not\in, \ni, \not\ni
∈ , ∉ ∉ , ∋ , ∌ \in, \notin \not\in, \ni, \not\ni ∈,∈/∈,∋,∋
\cap, \Cap, \sqcap, \bigcap
∩ , ⋒ , ⊓ , ⋂ \cap, \Cap, \sqcap, \bigcap ∩,⋒,⊓,⋂
\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus
∪ , ⋓ , ⊔ , ⋃ , ⨆ , ⊎ , ⨄ \cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus ∪,⋓,⊔,⋃,⨆,⊎,⨄
\setminus, \smallsetminus, \times
∖ , ∖ , × \setminus, \smallsetminus, \times ∖,∖,×
\subset, \Subset, \sqsubset
⊂ , ⋐ , ⊏ \subset, \Subset, \sqsubset ⊂,⋐,⊏
\supset, \Supset, \sqsupset
⊃ , ⋑ , ⊐ \supset, \Supset, \sqsupset ⊃,⋑,⊐
\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq
⊆ , ⊈ , ⊊ , ⊊ , ⊑ \subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq ⊆,⊈,⊊,,⊑
\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq
⊇ , ⊉ , ⊋ , ⊋ , ⊒ \supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq ⊇,⊉,⊋,,⊒
\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq
⫅ , ⊈ , ⫋ , ⫋ \subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq ⫅,,⫋,
\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq
⫆ , ⊉ , ⫌ , ⫌ \supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq ⫆,,⫌,
=, \ne, \neq, \equiv, \not\equiv
= , ≠ , ≠ , ≡ , ≢ =, \ne, \neq, \equiv, \not\equiv =,=,=,≡,≡
\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, :=
≐ , ≑ , = d e f , : = \doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, := ≐,≑,=def,:=
\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong
∼ , ≁ , ∽ , ∼ , ≃ , ⋍ , ≂ , ≅ , ≆ \sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong ∼,≁,∽,∼,≃,⋍,≂,≅,≆
\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto
≈ , ≈ , ≊ , ≍ , ∝ , ∝ \approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto ≈,≈,≊,≍,∝,∝
<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot
< , ≮ , ≪ , ≪̸ , ⋘ , ⋘̸ , ⋖ <, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot <,≮,≪,≪,⋘,⋘,⋖
>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot
> , ≯ , ≫ , ≫̸ , ⋙ , ⋙̸ , ⋗ >, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot >,≯,≫,≫,⋙,⋙,⋗
\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq
≤ , ≤ , ⪇ , ≦ , ≰ , ≰ , ≨ , ≨ \le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq ≤,≤,⪇,≦,≰,,≨,
\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq
≥ , ≥ , ⪈ , ≧ , ≱ , ≱ , ≩ , ≩ \ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq ≥,≥,⪈,≧,≱,,≩,
\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless
≶ , ⋚ , ⪋ , ≷ , ⋛ , ⪌ \lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless ≶,⋚,⪋,≷,⋛,⪌
\leqslant, \nleqslant, \eqslantless
⩽ , ≰ , ⪕ \leqslant, \nleqslant, \eqslantless ⩽,,⪕
\geqslant, \ngeqslant, \eqslantgtr
⩾ , ≱ , ⪖ \geqslant, \ngeqslant, \eqslantgtr ⩾,,⪖
\forall, \exists, \nexists
∀ , ∃ , ∄ \forall, \exists, \nexists ∀,∃,∄
\therefore, \because, \And
∴ , ∵ , & \therefore, \because, \And ∴,∵,&
\bar{q}, \bar{abc}, \overline{q}, \overline{abc},\lnot \neg, \not\operatorname{R}, \bot, \top
q ˉ , a b c ˉ , q ‾ , a b c ‾ , ¬ ¬ , ̸ R , ⊥ , ⊤ \bar{q}, \bar{abc}, \overline{q}, \overline{abc},\lnot \neg, \not\operatorname{R}, \bot, \top qˉ,abcˉ,q,abc,¬¬,R,⊥,⊤
\vdash \dashv, \vDash, \Vdash, \models
⊢ ⊣ , ⊨ , ⊩ , ⊨ \vdash \dashv, \vDash, \Vdash, \models ⊢⊣,⊨,⊩,⊨
\Rrightarrow, \Lleftarrow
⇛ , ⇚ \Rrightarrow, \Lleftarrow ⇛,⇚
\Rightarrow, \nRightarrow, \Longrightarrow \implies
⇒ , ⇏ , ⟹ ⟹ \Rightarrow, \nRightarrow, \Longrightarrow \implies ⇒,⇏,⟹⟹
\Leftarrow, \nLeftarrow, \Longleftarrow
⇐ , ⇍ , ⟸ \Leftarrow, \nLeftarrow, \Longleftarrow ⇐,⇍,⟸
\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff
⇔ , ⇎ , ⟺ ⟺ \Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff ⇔,⇎,⟺⟺
\Uparrow, \Downarrow, \Updownarrow
⇑ , ⇓ , ⇕ \Uparrow, \Downarrow, \Updownarrow ⇑,⇓,⇕
\rightarrow \to, \nrightarrow, \longrightarrow
→ → , ↛ , ⟶ \rightarrow \to, \nrightarrow, \longrightarrow →→,↛,⟶
\leftarrow \gets, \nleftarrow, \longleftarrow
↔ , ↮ , ⟷ \leftrightarrow, \nleftrightarrow, \longleftrightarrow ↔,↮,⟷
\leftrightarrow, \nleftrightarrow, \longleftrightarrow
↔ , ↮ , ⟷ \leftrightarrow, \nleftrightarrow, \longleftrightarrow ↔,↮,⟷
\uparrow, \downarrow, \updownarrow
↑ , ↓ , ↕ \uparrow, \downarrow, \updownarrow ↑,↓,↕
\nearrow, \swarrow, \nwarrow, \searrow
↗ , ↙ , ↖ , ↘ \nearrow, \swarrow, \nwarrow, \searrow ↗,↙,↖,↘
\mapsto, \longmapsto
↦ , ⟼ \mapsto, \longmapsto ↦,⟼
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
⇀ ⇁ ↼ ↽ ↿ ↾ ⇃ ⇂ ⇌ ⇋ \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons ⇀⇁↼↽↿↾⇃⇂⇌⇋
a^2
a 2 a^2 a2
a_2
a 2 a_2 a2
a^{2+2}
a 2 + 2 a^{2+2} a2+2
a_{i,j}
a i , j a_{i,j} ai,j
x_2^3
x 2 3 x_2^3 x23
{}_1^2\!X_3^4
1 2 X 3 4 {}_1^2\!X_3^4 12X34
x^\prime
x ′ x^\prime x′
\dot{x}
x ˙ \dot{x} x˙
\ddot{y}
y ¨ \ddot{y} y¨
\vec{c}
(只有一个字母)
c ⃗ \vec{c} c
\overleftarrow{a b}
a b ← \overleftarrow{a b} ab
\overrightarrow{c d}
c d → \overrightarrow{c d} cd
\overleftrightarrow{a b}
a b ↔ \overleftrightarrow{a b} ab
\widehat{e f g}
e f g ^ \widehat{e f g} efg
\overset{\frown} {AB}
A B ⌢ \overset{\frown} {AB} AB⌢
\overline{h i j}
h i j ‾ \overline{h i j} hij
\underline{k l m}
k l m ‾ \underline{k l m} klm
\overbrace{1+2+\cdots+100}
1 + 2 + ⋯ + 100 ⏞ \overbrace{1+2+\cdots+100} 1+2+⋯+100
\begin{matrix} 5050 \\ \overbrace{ 1+2+\cdots+100 } \end{matrix}
5050 1 + 2 + ⋯ + 100 ⏞ \begin{matrix} 5050 \\ \overbrace{ 1+2+\cdots+100 } \end{matrix} 50501+2+⋯+100
\underbrace{a+b+\cdots+z}
a + b + ⋯ + z ⏟ \underbrace{a+b+\cdots+z} a+b+⋯+z
\begin{matrix} \underbrace{ a+b+\cdots+z } \\ 26 \end{matrix}
a + b + ⋯ + z ⏟ 26 \begin{matrix} \underbrace{ a+b+\cdots+z } \\ 26 \end{matrix} a+b+⋯+z26
\sum_{k=1}^N k^2
∑ k = 1 N k 2 \sum_{k=1}^N k^2 ∑k=1Nk2
\begin{matrix} \sum_{k=1}^N k^2 \end{matrix}
∑ k = 1 N k 2 \begin{matrix} \sum_{k=1}^N k^2 \end{matrix} ∑k=1Nk2
\prod_{i=1}^N x_i
∏ i = 1 N x i \prod_{i=1}^N x_i ∏i=1Nxi
\begin{matrix} \prod_{i=1}^N x_i \end{matrix}
∏ i = 1 N x i \begin{matrix} \prod_{i=1}^N x_i \end{matrix} ∏i=1Nxi
\coprod_{i=1}^N x_i
∐ i = 1 N x i \coprod_{i=1}^N x_i ∐i=1Nxi
\begin{matrix} \coprod_{i=1}^N x_i \end{matrix}
∐ i = 1 N x i \begin{matrix} \coprod_{i=1}^N x_i \end{matrix} ∐i=1Nxi
\lim_{n \to \infty}x_n
lim n → ∞ x n \lim_{n \to \infty}x_n limn→∞xn
\begin{matrix} \lim_{n \to \infty}x_n \end{matrix}
lim n → ∞ x n \begin{matrix} \lim_{n \to \infty}x_n \end{matrix} limn→∞xn
\int_{-N}^{N} e^x\, {\rm d}x
∫ − N N e x d x \int_{-N}^{N} e^x\, {\rm d}x ∫−NNexdx
\begin{matrix} \int_{-N}^{N} e^x\, \mathrm{d}x \end{matrix}
(矩阵中积分符号变小)
∫ − N N e x d x \begin{matrix} \int_{-N}^{N} e^x\, \mathrm{d}x \end{matrix} ∫−NNexdx
\iint_{D}^{W} \, \mathrm{d}x\,\mathrm{d}y
∬ D W d x d y \iint_{D}^{W} \, \mathrm{d}x\,\mathrm{d}y ∬DWdxdy
\iiint_{E}^{V} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z
∭ E V d x d y d z \iiint_{E}^{V} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z ∭EVdxdydz
\oint_{C} x^3\, \mathrm{d}x + 4y^2\, \mathrm{d}y
∮ C x 3 d x + 4 y 2 d y \oint_{C} x^3\, \mathrm{d}x + 4y^2\, \mathrm{d}y ∮Cx3dx+4y2dy
\bigcap_1^{n} p
⋂ 1 n p \bigcap_1^{n} p ⋂1np
\bigcup_1^{k} p
⋃ 1 k p \bigcup_1^{k} p ⋃1kp
\frac{2}{4}=0.5
2 4 = 0.5 \frac{2}{4}=0.5 42=0.5
\tfrac{2}{4} = 0.5
2 4 = 0.5 \tfrac{2}{4} = 0.5 42=0.5
\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a
2 c + 2 d + 2 4 = a \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a c+d+4222=a
\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a
2 4 = 0.5 2 c + 2 d + 2 4 = a \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a 42=0.5c+d+4222=a
\dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}
( n r ) = ( n n − r ) = C n r = C n n − r \dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r} (rn)=(n−rn)=Cnr=Cnn−r
\tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}
( n r ) = ( n n − r ) = C n r = C n n − r \tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r} (rn)=(n−rn)=Cnr=Cnn−r
\binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}
( n r ) = ( n n − r ) = C n r = C n n − r \binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r} (rn)=(n−rn)=Cnr=Cnn−r
在以e为底的指数函数、极限和积分中尽量不要使用 \frac 符号:它会使整段函数看起来很怪,而且可能产生歧义。也正是因此它在专业数学排版中几乎从不出现。
横着写这些分式,中间使用斜线间隔 / (用斜线代替分数线)。
\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\
\int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\
\end{array}
B a d B e t t e r e i π 2 e i π 2 e i π / 2 ∫ − π 2 π 2 sin x d x ∫ − π / 2 π / 2 sin x d x \begin{array}{cc} \mathrm{Bad} & \mathrm{Better} \\ \hline \\ e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\ \int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\ \end{array} Badei2πe2iπ∫−2π2πsinxdxBettereiπ/2∫−π/2π/2sinxdx
\begin{类型}
公式内容
\end{类型}
\begin{matrix}
x & y \\
z & v
\end{matrix}
x y z v \begin{matrix} x & y \\ z & v \end{matrix} xzyv
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
∣ x y z v ∣ \begin{vmatrix} x & y \\ z & v \end{vmatrix} ∣∣∣∣xzyv∣∣∣∣
\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}
∥ x y z v ∥ \begin{Vmatrix} x & y \\ z & v \end{Vmatrix} ∥∥∥∥xzyv∥∥∥∥
\begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix}
[ 0 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ 0 ] \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} ⎣⎢⎡0⋮0⋯⋱⋯0⋮0⎦⎥⎤
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
{ x y z v } \begin{Bmatrix} x & y \\ z & v \end{Bmatrix} {xzyv}
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}
( x y z v ) \begin{pmatrix} x & y \\ z & v \end{pmatrix} (xzyv)
f(n) =
\begin{cases}
n/2, & \text{if }n\text{ is even} \\
3n+1, & \text{if }n\text{ is odd}
\end{cases}
f ( n ) = { n / 2 , if n is even 3 n + 1 , if n is odd f(n) = \begin{cases} n/2, & \text{if }n\text{ is even} \\ 3n+1, & \text{if }n\text{ is odd} \end{cases} f(n)={n/2,3n+1,if n is evenif n is odd
写拖式的重点语句!!!!!!
\begin{aligned}
f(x) & = (m+n)^2 \\
& = m^2+2mn+n^2 \\
\end{aligned}
f ( x ) = ( m + n ) 2 = m 2 + 2 m n + n 2 \begin{aligned} f(x) & = (m+n)^2 \\ & = m^2+2mn+n^2 \\ \end{aligned} f(x)=(m+n)2=m2+2mn+n2
\begin{aligned}
3^{6n+3}+4^{6n+3}
& \equiv (3^3)^{2n+1}+(4^3)^{2n+1}\\
& \equiv 27^{2n+1}+64^{2n+1}\\
& \equiv 27^{2n+1}+(-27)^{2n+1}\\
& \equiv 27^{2n+1}-27^{2n+1}\\
& \equiv 0 \pmod{91}\\
\end{aligned}
3 6 n + 3 + 4 6 n + 3 ≡ ( 3 3 ) 2 n + 1 + ( 4 3 ) 2 n + 1 ≡ 2 7 2 n + 1 + 6 4 2 n + 1 ≡ 2 7 2 n + 1 + ( − 27 ) 2 n + 1 ≡ 2 7 2 n + 1 − 2 7 2 n + 1 ≡ 0 ( m o d 91 ) \begin{aligned} 3^{6n+3}+4^{6n+3} & \equiv (3^3)^{2n+1}+(4^3)^{2n+1}\\ & \equiv 27^{2n+1}+64^{2n+1}\\ & \equiv 27^{2n+1}+(-27)^{2n+1}\\ & \equiv 27^{2n+1}-27^{2n+1}\\ & \equiv 0 \pmod{91}\\ \end{aligned} 36n+3+46n+3≡(33)2n+1+(43)2n+1≡272n+1+642n+1≡272n+1+(−27)2n+1≡272n+1−272n+1≡0(mod91)
\begin{cases}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
{ 3 x + 5 y + z 7 x − 2 y + 4 z − 6 x + 3 y + 2 z \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} ⎩⎪⎨⎪⎧3x+5y+z7x−2y+4z−6x+3y+2z
\left\{\begin{aligned}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{aligned}\right.
{ 3 x + 5 y + z 7 x − 2 y + 4 z − 6 x + 3 y + 2 z \left\{\begin{aligned} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{aligned}\right. ⎩⎪⎨⎪⎧3x+5y+z7x−2y+4z−6x+3y+2z
\begin{array}{c|lcr}
n & \text{左对齐} & \text{居中对齐} & \text{右对齐} \\
\hline
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i
\end{array}
n 左对齐 居中对齐 右对齐 1 0.24 1 125 2 − 1 189 − 8 3 − 20 2000 1 + 10 i \begin{array}{c|lcr} n & \text{左对齐} & \text{居中对齐} & \text{右对齐} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \end{array} n123左对齐0.24−1−20居中对齐11892000右对齐125−81+10i
\begin{array}{lcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
z = a f ( x , y , z ) = x + y + z \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} zf(x,y,z)==ax+y+z
\begin{array}{ccc}
a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
a b S 0 0 1 0 1 1 1 0 1 1 1 0 \begin{array}{ccc} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array} a0011b0101S1110
% outer vertical array of arrays 外层垂直表格
\begin{array}{c}
% inner horizontal array of arrays 内层水平表格
\begin{array}{cc}
% inner array of minimum values 内层"最小值"数组
\begin{array}{c|cccc}
\text{min} & 0 & 1 & 2 & 3\\
\hline
0 & 0 & 0 & 0 & 0\\
1 & 0 & 1 & 1 & 1\\
2 & 0 & 1 & 2 & 2\\
3 & 0 & 1 & 2 & 3
\end{array}
&
% inner array of maximum values 内层"最大值"数组
\begin{array}{c|cccc}
\text{max}&0&1&2&3\\
\hline
0 & 0 & 1 & 2 & 3\\
1 & 1 & 1 & 2 & 3\\
2 & 2 & 2 & 2 & 3\\
3 & 3 & 3 & 3 & 3
\end{array}
\end{array}
% 内层第一行表格组结束
\\
% inner array of delta values 内层第二行Delta值数组
\begin{array}{c|cccc}
\Delta&0&1&2&3\\
\hline
0 & 0 & 1 & 2 & 3\\
1 & 1 & 0 & 1 & 2\\
2 & 2 & 1 & 0 & 1\\
3 & 3 & 2 & 1 & 0
\end{array}
% 内层第二行表格组结束
\end{array}
min 0 1 2 3 0 0 0 0 0 1 0 1 1 1 2 0 1 2 2 3 0 1 2 3 max 0 1 2 3 0 0 1 2 3 1 1 1 2 3 2 2 2 2 3 3 3 3 3 3 Δ 0 1 2 3 0 0 1 2 3 1 1 0 1 2 2 2 1 0 1 3 3 2 1 0 % outer vertical array of arrays 外层垂直表格 \begin{array}{c} % inner horizontal array of arrays 内层水平表格 \begin{array}{cc} % inner array of minimum values 内层"最小值"数组 \begin{array}{c|cccc} \text{min} & 0 & 1 & 2 & 3\\ \hline 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 1 & 1 & 1\\ 2 & 0 & 1 & 2 & 2\\ 3 & 0 & 1 & 2 & 3 \end{array} & % inner array of maximum values 内层"最大值"数组 \begin{array}{c|cccc} \text{max}&0&1&2&3\\ \hline 0 & 0 & 1 & 2 & 3\\ 1 & 1 & 1 & 2 & 3\\ 2 & 2 & 2 & 2 & 3\\ 3 & 3 & 3 & 3 & 3 \end{array} \end{array} % 内层第一行表格组结束 \\ % inner array of delta values 内层第二行Delta值数组 \begin{array}{c|cccc} \Delta&0&1&2&3\\ \hline 0 & 0 & 1 & 2 & 3\\ 1 & 1 & 0 & 1 & 2\\ 2 & 2 & 1 & 0 & 1\\ 3 & 3 & 2 & 1 & 0 \end{array} % 内层第二行表格组结束 \end{array} min012300000101112012230123max012300123111232222333333Δ012300123110122210133210
\left[
\begin{array}{cc|c}
1&2&3\\
4&5&6
\end{array}
\right]
[ 1 2 3 4 5 6 ] \left[ \begin{array}{cc|c} 1&2&3\\ 4&5&6 \end{array} \right] [142536]
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta
A B Γ Δ E Z H Θ \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta ABΓΔEZHΘ
\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi
I K Λ M N Ξ O Π \Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi IKΛMNΞOΠ
\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega
P Σ T Υ Φ X Ψ Ω \Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega PΣTΥΦXΨΩ
\alpha \beta \gamma \delta \epsilon \zeta \eta \theta
α β γ δ ϵ ζ η θ \alpha \beta \gamma \delta \epsilon \zeta \eta \theta αβγδϵζηθ
\iota \kappa \lambda \mu \nu \omicron \xi \pi
ι κ λ μ ν ο ξ π \iota \kappa \lambda \mu \nu \omicron \xi \pi ικλμνοξπ
\rho \sigma \tau \upsilon \phi \chi \psi \omega
ρ σ τ υ ϕ χ ψ ω \rho \sigma \tau \upsilon \phi \chi \psi \omega ρστυϕχψω
\varepsilon \digamma \varkappa \varpi
ε ϝ ϰ ϖ \varepsilon \digamma \varkappa \varpi εϝϰϖ
\varrho \varsigma \vartheta \varphi
ϱ ς ϑ φ \varrho \varsigma \vartheta \varphi ϱςϑφ
\mathbb{ABCDEFGHI}
A B C D E F G H I \mathbb{ABCDEFGHI} ABCDEFGHI
\mathbb{JKLMNOPQR}
J K L M N O P Q R \mathbb{JKLMNOPQR} JKLMNOPQR
\mathbb{STUVWXYZ}
S T U V W X Y Z \mathbb{STUVWXYZ} STUVWXYZ
\mathbf{ABCDEFGHI}
A B C D E F G H I \mathbf{ABCDEFGHI} ABCDEFGHI
\mathbf{JKLMNOPQR}
J K L M N O P Q R \mathbf{JKLMNOPQR} JKLMNOPQR
\mathbf{STUVWXYZ}
S T U V W X Y Z \mathbf{STUVWXYZ} STUVWXYZ
\mathbf{abcdefghijklm}
a b c d e f g h i j k l m \mathbf{abcdefghijklm} abcdefghijklm
\mathbf{nopqrstuvwxyz}
n o p q r s t u v w x y z \mathbf{nopqrstuvwxyz} nopqrstuvwxyz
\mathbf{0123456789}
0123456789 \mathbf{0123456789} 0123456789
\boldsymbol{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta}
A B Γ Δ E Z H Θ \boldsymbol{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} ABΓΔEZHΘ
\boldsymbol{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho}
I K Λ M N Ξ Π P \boldsymbol{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho} IKΛMNΞΠP
\boldsymbol{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega}
Σ T Υ Φ X Ψ Ω \boldsymbol{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega} ΣTΥΦXΨΩ
\boldsymbol{\alpha\beta\gamma\delta\epsilon\zeta\eta\theta}
α β γ δ ϵ ζ η θ \boldsymbol{\alpha\beta\gamma\delta\epsilon\zeta\eta\theta} αβγδϵζηθ
\boldsymbol{\iota\kappa\lambda\mu\nu\xi\pi\rho}
ι κ λ μ ν ξ π ρ \boldsymbol{\iota\kappa\lambda\mu\nu\xi\pi\rho} ικλμνξπρ
\boldsymbol{\sigma\tau\upsilon\phi\chi\psi\omega}
σ τ υ ϕ χ ψ ω \boldsymbol{\sigma\tau\upsilon\phi\chi\psi\omega} στυϕχψω
\boldsymbol{\varepsilon\digamma\varkappa\varpi}
ε ϝ ϰ ϖ \boldsymbol{\varepsilon\digamma\varkappa\varpi} εϝϰϖ
\boldsymbol{\varrho\varsigma\vartheta\varphi}
ϱ ς ϑ φ \boldsymbol{\varrho\varsigma\vartheta\varphi} ϱςϑφ
\mathit{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta}
A B Γ Δ E Z H Θ \mathit{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} ABΓΔEZHΘ
\mathit{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho}
I K Λ M N Ξ Π P \mathit{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho} IKΛMNΞΠP
\mathit{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega}
Σ T Υ Φ X Ψ Ω \mathit{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega} ΣTΥΦXΨΩ
\mathrm{ABCDEFGHI}
A B C D E F G H I \mathrm{ABCDEFGHI} ABCDEFGHI
\mathrm{JKLMNOPQR}
J K L M N O P Q R \mathrm{JKLMNOPQR} JKLMNOPQR
\mathrm{STUVWXYZ}
S T U V W X Y Z \mathrm{STUVWXYZ} STUVWXYZ
\mathrm{abcdefghijklm}
a b c d e f g h i j k l m \mathrm{abcdefghijklm} abcdefghijklm
\mathrm{nopqrstuvwxyz}
n o p q r s t u v w x y z \mathrm{nopqrstuvwxyz} nopqrstuvwxyz
\mathrm{0123456789}
0123456789 \mathrm{0123456789} 0123456789
\mathsf{ABCDEFGHI}
A B C D E F G H I \mathsf{ABCDEFGHI} ABCDEFGHI
\mathsf{JKLMNOPQR}
J K L M N O P Q R \mathsf{JKLMNOPQR} JKLMNOPQR
\mathsf{STUVWXYZ}
S T U V W X Y Z \mathsf{STUVWXYZ} STUVWXYZ
\mathsf{abcdefghijklm}
a b c d e f g h i j k l m \mathsf{abcdefghijklm} abcdefghijklm
\mathsf{nopqrstuvwxyz}
n o p q r s t u v w x y z \mathsf{nopqrstuvwxyz} nopqrstuvwxyz
\mathsf{0123456789}
0123456789 \mathsf{0123456789} 0123456789
\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta}
A B Γ Δ E Z H Θ \mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} ABΓΔEZHΘ
\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho}
I K Λ M N Ξ Π P \mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho} IKΛMNΞΠP
\mathsf{\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega}
Σ T Υ Φ X Ψ Ω \mathsf{\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega} ΣTΥΦXΨΩ
\mathcal{ABCDEFGHI}
A B C D E F G H I \mathcal{ABCDEFGHI} ABCDEFGHI
\mathcal{JKLMNOPQR}
J K L M N O P Q R \mathcal{JKLMNOPQR} JKLMNOPQR
\mathcal{STUVWXYZ}
S T U V W X Y Z \mathcal{STUVWXYZ} STUVWXYZ
\mathfrak{ABCDEFGHI}
A B C D E F G H I \mathfrak{ABCDEFGHI} ABCDEFGHI
\mathfrak{JKLMNOPQR}
J K L M N O P Q R \mathfrak{JKLMNOPQR} JKLMNOPQR
\mathfrak{STUVWXYZ}
S T U V W X Y Z \mathfrak{STUVWXYZ} STUVWXYZ
\mathfrak{abcdefghijklm}
a b c d e f g h i j k l m \mathfrak{abcdefghijklm} abcdefghijklm
\mathfrak{nopqrstuvwxyz}
n o p q r s t u v w x y z \mathfrak{nopqrstuvwxyz} nopqrstuvwxyz
\mathfrak{0123456789}
0123456789 \mathfrak{0123456789} 0123456789
{\scriptstyle\text{abcdefghijklm}}
abcdefghijklm {\scriptstyle\text{abcdefghijklm}} abcdefghijklm
x y z
x y z x y z xyz
\text{x y z}
x y z \text{x y z} x y z
\text{if }n\text{ is even}
if n is even \text{if }n\text{ is even} if n is even
使用\text {文字}
来添加注释文本(注释文本不会被识别为公式,不用斜体显示)。\text {文字}
中仍可以使用$公式$
插入其它公式。
f(n)= \begin{cases}
n/2, & \text {if $n$ is even} \\
3n+1, &\text{if $n$ is odd}
\end{cases}
\frac{1}{2}
1 2 \frac{1}{2} 21
\left(\frac{1}{2} \right)
( 1 2 ) \left(\frac{1}{2} \right) (21)
\left( \frac{a}{b} \right)
( a b ) \left( \frac{a}{b} \right) (ba)
\left[ \frac{a}{b} \right]
[ a b ] \left[ \frac{a}{b} \right] [ba]
\{ \frac{a}{b} \}
{ a b } \{ \frac{a}{b} \} {ba}
\left \langle \frac{a}{b} \right \rangle
⟨ a b ⟩ \left \langle \frac{a}{b} \right \rangle ⟨ba⟩
\left| \frac{a}{b} \right|
∣ a b ∣ \left| \frac{a}{b} \right| ∣∣ba∣∣
\left \| \frac{a}{b} \right \|
∥ a b ∥ \left \| \frac{a}{b} \right \| ∥∥ba∥∥
\left \lfloor \frac{a}{b} \right \rfloor
⌊ a b ⌋ \left \lfloor \frac{a}{b} \right \rfloor ⌊ba⌋
\left \lceil \frac{c}{d} \right \rceil
⌈ c d ⌉ \left \lceil \frac{c}{d} \right \rceil ⌈dc⌉
\left / \frac{a}{b} \right \backslash
/ a b \ \left / \frac{a}{b} \right \backslash /ba\
\left \uparrow \frac{a}{b} \right \downarrow
↑ a b ↓ \left \uparrow \frac{a}{b} \right \downarrow ⏐↑ba↓⏐
\left \Uparrow \frac{a}{b} \right \Downarrow
⇑ a b ⇓ \left \Uparrow \frac{a}{b} \right \Downarrow ‖⇑ba⇓‖
\left \updownarrow \frac{a}{b} \right \Updownarrow
↕ a b ⇕ \left \updownarrow \frac{a}{b} \right \Updownarrow ↓↑ba⇓⇑
\left[ 0,1 \right)
[ 0 , 1 ) \left[ 0,1 \right) [0,1)
\left \{\frac{a}{b} \right.
{ a b \left \{\frac{a}{b} \right. {ba
\left. \frac{a}{b} \right \}
a b } \left. \frac{a}{b} \right \} ba}
\Bigg ( \bigg [ \Big \{ \big \langle \left | \| \frac{a}{b} \| \right | \big \rangle \Big \} \bigg ] \Bigg )
( [ { ⟨ ∣ ∥ a b ∥ ∣ ⟩ } ] ) \Bigg ( \bigg [ \Big \{ \big \langle \left | \| \frac{a}{b} \| \right | \big \rangle \Big \} \bigg ] \Bigg ) ([{⟨∣∣∥ba∥∣∣⟩}])
\alpha\qquad\beta
α β \alpha\qquad\beta αβ
\alpha\quad\beta
α β \alpha\quad\beta αβ
\alpha\ \beta
α β \alpha\ \beta α β
\alpha\;\beta
α β \alpha\;\beta αβ
\alpha\,\beta
α β \alpha\,\beta αβ
\alpha\beta
α β \alpha\beta αβ
\alpha\!\beta
α β \alpha\!\beta αβ
使用 \color{颜色}{文字}
来更改特定的文字颜色。
更改文字颜色 需要浏览器支持 ,如果浏览器不知道你所需的颜色,那么文字将被渲染为黑色。
输入 \color {#rgb} {text}
来自定义更多的颜色,其中#rgb
的 r g b
可输入0-9
和 a-f
来表示红色、绿色和蓝色的纯度(饱和度)。
\begin{array}{|rrrrrrrr|}\hline
\verb+#000+ & \color{#000}{text} & & &
\verb+#00F+ & \color{#00F}{text} & & \\
& & \verb+#0F0+ & \color{#0F0}{text} &
& & \verb+#0FF+ & \color{#0FF}{text}\\
\verb+#F00+ & \color{#F00}{text} & & &
\verb+#F0F+ & \color{#F0F}{text} & & \\
& & \verb+#FF0+ & \color{#FF0}{text} &
& & \verb+#FFF+ & \color{#FFF}{text}\\
\hline
\end{array}
显示:
#000 t e x t #00F t e x t #0F0 t e x t #0FF t e x t #F00 t e x t #F0F t e x t #FF0 t e x t #FFF t e x t \begin{array}{|rrrrrrrr|}\hline \verb+#000+ & \color{#000}{text} & & & \verb+#00F+ & \color{#00F}{text} & & \\ & & \verb+#0F0+ & \color{#0F0}{text} & & & \verb+#0FF+ & \color{#0FF}{text}\\ \verb+#F00+ & \color{#F00}{text} & & & \verb+#F0F+ & \color{#F0F}{text} & & \\ & & \verb+#FF0+ & \color{#FF0}{text} & & & \verb+#FFF+ & \color{#FFF}{text}\\ \hline \end{array} #000#F00texttext#0F0#FF0texttext#00F#F0Ftexttext#0FF#FFFtexttext
例子:
\begin{array}{|rrrrrrrr|}
\hline
\verb+#000+ & \color{#000}{text} & \verb+#005+ & \color{#005}{text} & \verb+#00A+ & \color{#00A}{text} & \verb+#00F+ & \color{#00F}{text} \\
\verb+#500+ & \color{#500}{text} & \verb+#505+ & \color{#505}{text} & \verb+#50A+ & \color{#50A}{text} & \verb+#50F+ & \color{#50F}{text} \\
\verb+#A00+ & \color{#A00}{text} & \verb+#A05+ & \color{#A05}{text} & \verb+#A0A+ & \color{#A0A}{text} & \verb+#A0F+ & \color{#A0F}{text} \\
\verb+#F00+ & \color{#F00}{text} & \verb+#F05+ & \color{#F05}{text} & \verb+#F0A+ & \color{#F0A}{text} & \verb+#F0F+ & \color{#F0F}{text} \\
\hline
\verb+#080+ & \color{#080}{text} & \verb+#085+ & \color{#085}{text} & \verb+#08A+ & \color{#08A}{text} & \verb+#08F+ & \color{#08F}{text} \\
\verb+#580+ & \color{#580}{text} & \verb+#585+ & \color{#585}{text} & \verb+#58A+ & \color{#58A}{text} & \verb+#58F+ & \color{#58F}{text} \\
\verb+#A80+ & \color{#A80}{text} & \verb+#A85+ & \color{#A85}{text} & \verb+#A8A+ & \color{#A8A}{text} & \verb+#A8F+ & \color{#A8F}{text} \\
\verb+#F80+ & \color{#F80}{text} & \verb+#F85+ & \color{#F85}{text} & \verb+#F8A+ & \color{#F8A}{text} & \verb+#F8F+ & \color{#F8F}{text} \\
\hline
\verb+#0F0+ & \color{#0F0}{text} & \verb+#0F5+ & \color{#0F5}{text} & \verb+#0FA+ & \color{#0FA}{text} & \verb+#0FF+ & \color{#0FF}{text} \\
\verb+#5F0+ & \color{#5F0}{text} & \verb+#5F5+ & \color{#5F5}{text} & \verb+#5FA+ & \color{#5FA}{text} & \verb+#5FF+ & \color{#5FF}{text} \\
\verb+#AF0+ & \color{#AF0}{text} & \verb+#AF5+ & \color{#AF5}{text} & \verb+#AFA+ & \color{#AFA}{text} & \verb+#AFF+ & \color{#AFF}{text} \\
\verb+#FF0+ & \color{#FF0}{text} & \verb+#FF5+ & \color{#FF5}{text} & \verb+#FFA+ & \color{#FFA}{text} & \verb+#FFF+ & \color{#FFF}{text} \\
\hline
\end{array}
#000 t e x t #005 t e x t #00A t e x t #00F t e x t #500 t e x t #505 t e x t #50A t e x t #50F t e x t #A00 t e x t #A05 t e x t #A0A t e x t #A0F t e x t #F00 t e x t #F05 t e x t #F0A t e x t #F0F t e x t #080 t e x t #085 t e x t #08A t e x t #08F t e x t #580 t e x t #585 t e x t #58A t e x t #58F t e x t #A80 t e x t #A85 t e x t #A8A t e x t #A8F t e x t #F80 t e x t #F85 t e x t #F8A t e x t #F8F t e x t #0F0 t e x t #0F5 t e x t #0FA t e x t #0FF t e x t #5F0 t e x t #5F5 t e x t #5FA t e x t #5FF t e x t #AF0 t e x t #AF5 t e x t #AFA t e x t #AFF t e x t #FF0 t e x t #FF5 t e x t #FFA t e x t #FFF t e x t \begin{array}{|rrrrrrrr|} \hline \verb+#000+ & \color{#000}{text} & \verb+#005+ & \color{#005}{text} & \verb+#00A+ & \color{#00A}{text} & \verb+#00F+ & \color{#00F}{text} \\ \verb+#500+ & \color{#500}{text} & \verb+#505+ & \color{#505}{text} & \verb+#50A+ & \color{#50A}{text} & \verb+#50F+ & \color{#50F}{text} \\ \verb+#A00+ & \color{#A00}{text} & \verb+#A05+ & \color{#A05}{text} & \verb+#A0A+ & \color{#A0A}{text} & \verb+#A0F+ & \color{#A0F}{text} \\ \verb+#F00+ & \color{#F00}{text} & \verb+#F05+ & \color{#F05}{text} & \verb+#F0A+ & \color{#F0A}{text} & \verb+#F0F+ & \color{#F0F}{text} \\ \hline \verb+#080+ & \color{#080}{text} & \verb+#085+ & \color{#085}{text} & \verb+#08A+ & \color{#08A}{text} & \verb+#08F+ & \color{#08F}{text} \\ \verb+#580+ & \color{#580}{text} & \verb+#585+ & \color{#585}{text} & \verb+#58A+ & \color{#58A}{text} & \verb+#58F+ & \color{#58F}{text} \\ \verb+#A80+ & \color{#A80}{text} & \verb+#A85+ & \color{#A85}{text} & \verb+#A8A+ & \color{#A8A}{text} & \verb+#A8F+ & \color{#A8F}{text} \\ \verb+#F80+ & \color{#F80}{text} & \verb+#F85+ & \color{#F85}{text} & \verb+#F8A+ & \color{#F8A}{text} & \verb+#F8F+ & \color{#F8F}{text} \\ \hline \verb+#0F0+ & \color{#0F0}{text} & \verb+#0F5+ & \color{#0F5}{text} & \verb+#0FA+ & \color{#0FA}{text} & \verb+#0FF+ & \color{#0FF}{text} \\ \verb+#5F0+ & \color{#5F0}{text} & \verb+#5F5+ & \color{#5F5}{text} & \verb+#5FA+ & \color{#5FA}{text} & \verb+#5FF+ & \color{#5FF}{text} \\ \verb+#AF0+ & \color{#AF0}{text} & \verb+#AF5+ & \color{#AF5}{text} & \verb+#AFA+ & \color{#AFA}{text} & \verb+#AFF+ & \color{#AFF}{text} \\ \verb+#FF0+ & \color{#FF0}{text} & \verb+#FF5+ & \color{#FF5}{text} & \verb+#FFA+ & \color{#FFA}{text} & \verb+#FFF+ & \color{#FFF}{text} \\ \hline \end{array} #000#500#A00#F00#080#580#A80#F80#0F0#5F0#AF0#FF0texttexttexttexttexttexttexttexttexttexttexttext#005#505#A05#F05#085#585#A85#F85#0F5#5F5#AF5#FF5texttexttexttexttexttexttexttexttexttexttexttext#00A#50A#A0A#F0A#08A#58A#A8A#F8A#0FA#5FA#AFA#FFAtexttexttexttexttexttexttexttexttexttexttexttext#00F#50F#A0F#F0F#08F#58F#A8F#F8F#0FF#5FF#AFF#FFFtexttexttexttexttexttexttexttexttexttexttexttext
{\color{Red}abc}
a b c {\color{Red}abc} abc
\color{Red}{abc}
a b c \color{Red}{abc} abc
{\color{Blue}x^2}+{\color{Brown}2x} - {\color{OliveGreen}1}
x 2 + 2 x − 1 {\color{Blue}x^2}+{\color{Brown}2x} - {\color{OliveGreen}1} x2+2x−1
x_{\color{Maroon}1,2}=\frac{-b\pm\sqrt{{\color{Maroon}b^2-4ac}}}{2a}
x 1 , 2 = − b ± b 2 − 4 a c 2 a x_{\color{Maroon}1,2}=\frac{-b\pm\sqrt{{\color{Maroon}b^2-4ac}}}{2a} x1,2=2a−b±b2−4ac
本文转载自:https://www.cnblogs.com/1024th/p/11623258.html